Metamath Proof Explorer


Theorem isuspgrimlem

Description: Lemma for isuspgrim . (Contributed by AV, 27-Apr-2025)

Ref Expression
Hypotheses isusgrim.v 𝑉 = ( Vtx ‘ 𝐺 )
isusgrim.w 𝑊 = ( Vtx ‘ 𝐻 )
isusgrim.e 𝐸 = ( Edg ‘ 𝐺 )
isusgrim.d 𝐷 = ( Edg ‘ 𝐻 )
Assertion isuspgrimlem ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) → ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 )

Proof

Step Hyp Ref Expression
1 isusgrim.v 𝑉 = ( Vtx ‘ 𝐺 )
2 isusgrim.w 𝑊 = ( Vtx ‘ 𝐻 )
3 isusgrim.e 𝐸 = ( Edg ‘ 𝐺 )
4 isusgrim.d 𝐷 = ( Edg ‘ 𝐻 )
5 uspgrupgr ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph )
6 5 adantr ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → 𝐺 ∈ UPGraph )
7 6 adantr ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) → 𝐺 ∈ UPGraph )
8 7 adantr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) → 𝐺 ∈ UPGraph )
9 1 3 upgredg ( ( 𝐺 ∈ UPGraph ∧ 𝑒𝐸 ) → ∃ 𝑎𝑉𝑏𝑉 𝑒 = { 𝑎 , 𝑏 } )
10 8 9 sylan ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑒𝐸 ) → ∃ 𝑎𝑉𝑏𝑉 𝑒 = { 𝑎 , 𝑏 } )
11 preq12 ( ( 𝑥 = 𝑎𝑦 = 𝑏 ) → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } )
12 11 eleq1d ( ( 𝑥 = 𝑎𝑦 = 𝑏 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { 𝑎 , 𝑏 } ∈ 𝐸 ) )
13 fveq2 ( 𝑥 = 𝑎 → ( 𝐹𝑥 ) = ( 𝐹𝑎 ) )
14 13 adantr ( ( 𝑥 = 𝑎𝑦 = 𝑏 ) → ( 𝐹𝑥 ) = ( 𝐹𝑎 ) )
15 fveq2 ( 𝑦 = 𝑏 → ( 𝐹𝑦 ) = ( 𝐹𝑏 ) )
16 15 adantl ( ( 𝑥 = 𝑎𝑦 = 𝑏 ) → ( 𝐹𝑦 ) = ( 𝐹𝑏 ) )
17 14 16 preq12d ( ( 𝑥 = 𝑎𝑦 = 𝑏 ) → { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } = { ( 𝐹𝑎 ) , ( 𝐹𝑏 ) } )
18 17 eleq1d ( ( 𝑥 = 𝑎𝑦 = 𝑏 ) → ( { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ↔ { ( 𝐹𝑎 ) , ( 𝐹𝑏 ) } ∈ 𝐷 ) )
19 12 18 bibi12d ( ( 𝑥 = 𝑎𝑦 = 𝑏 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹𝑎 ) , ( 𝐹𝑏 ) } ∈ 𝐷 ) ) )
20 19 rspc2gv ( ( 𝑎𝑉𝑏𝑉 ) → ( ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹𝑎 ) , ( 𝐹𝑏 ) } ∈ 𝐷 ) ) )
21 20 com12 ( ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) → ( ( 𝑎𝑉𝑏𝑉 ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹𝑎 ) , ( 𝐹𝑏 ) } ∈ 𝐷 ) ) )
22 21 adantl ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) → ( ( 𝑎𝑉𝑏𝑉 ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹𝑎 ) , ( 𝐹𝑏 ) } ∈ 𝐷 ) ) )
23 22 imp ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑉𝑏𝑉 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹𝑎 ) , ( 𝐹𝑏 ) } ∈ 𝐷 ) )
24 f1ofn ( 𝐹 : 𝑉1-1-onto𝑊𝐹 Fn 𝑉 )
25 24 ad3antlr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑉𝑏𝑉 ) ) → 𝐹 Fn 𝑉 )
26 simprl ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑉𝑏𝑉 ) ) → 𝑎𝑉 )
27 simpr ( ( 𝑎𝑉𝑏𝑉 ) → 𝑏𝑉 )
28 27 adantl ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑉𝑏𝑉 ) ) → 𝑏𝑉 )
29 fnimapr ( ( 𝐹 Fn 𝑉𝑎𝑉𝑏𝑉 ) → ( 𝐹 “ { 𝑎 , 𝑏 } ) = { ( 𝐹𝑎 ) , ( 𝐹𝑏 ) } )
30 25 26 28 29 syl3anc ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑉𝑏𝑉 ) ) → ( 𝐹 “ { 𝑎 , 𝑏 } ) = { ( 𝐹𝑎 ) , ( 𝐹𝑏 ) } )
31 30 eqcomd ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑉𝑏𝑉 ) ) → { ( 𝐹𝑎 ) , ( 𝐹𝑏 ) } = ( 𝐹 “ { 𝑎 , 𝑏 } ) )
32 31 eleq1d ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑉𝑏𝑉 ) ) → ( { ( 𝐹𝑎 ) , ( 𝐹𝑏 ) } ∈ 𝐷 ↔ ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ 𝐷 ) )
33 23 32 bitrd ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑉𝑏𝑉 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ 𝐷 ) )
34 33 adantr ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑉𝑏𝑉 ) ) ∧ 𝑒 = { 𝑎 , 𝑏 } ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ 𝐷 ) )
35 34 biimpd ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑉𝑏𝑉 ) ) ∧ 𝑒 = { 𝑎 , 𝑏 } ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 → ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ 𝐷 ) )
36 eleq1 ( 𝑒 = { 𝑎 , 𝑏 } → ( 𝑒𝐸 ↔ { 𝑎 , 𝑏 } ∈ 𝐸 ) )
37 imaeq2 ( 𝑒 = { 𝑎 , 𝑏 } → ( 𝐹𝑒 ) = ( 𝐹 “ { 𝑎 , 𝑏 } ) )
38 37 eleq1d ( 𝑒 = { 𝑎 , 𝑏 } → ( ( 𝐹𝑒 ) ∈ 𝐷 ↔ ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ 𝐷 ) )
39 36 38 imbi12d ( 𝑒 = { 𝑎 , 𝑏 } → ( ( 𝑒𝐸 → ( 𝐹𝑒 ) ∈ 𝐷 ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 → ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ 𝐷 ) ) )
40 39 adantl ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑉𝑏𝑉 ) ) ∧ 𝑒 = { 𝑎 , 𝑏 } ) → ( ( 𝑒𝐸 → ( 𝐹𝑒 ) ∈ 𝐷 ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 → ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ 𝐷 ) ) )
41 35 40 mpbird ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑉𝑏𝑉 ) ) ∧ 𝑒 = { 𝑎 , 𝑏 } ) → ( 𝑒𝐸 → ( 𝐹𝑒 ) ∈ 𝐷 ) )
42 41 exp31 ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) → ( ( 𝑎𝑉𝑏𝑉 ) → ( 𝑒 = { 𝑎 , 𝑏 } → ( 𝑒𝐸 → ( 𝐹𝑒 ) ∈ 𝐷 ) ) ) )
43 42 com23 ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) → ( 𝑒 = { 𝑎 , 𝑏 } → ( ( 𝑎𝑉𝑏𝑉 ) → ( 𝑒𝐸 → ( 𝐹𝑒 ) ∈ 𝐷 ) ) ) )
44 43 com24 ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) → ( 𝑒𝐸 → ( ( 𝑎𝑉𝑏𝑉 ) → ( 𝑒 = { 𝑎 , 𝑏 } → ( 𝐹𝑒 ) ∈ 𝐷 ) ) ) )
45 44 imp ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑒𝐸 ) → ( ( 𝑎𝑉𝑏𝑉 ) → ( 𝑒 = { 𝑎 , 𝑏 } → ( 𝐹𝑒 ) ∈ 𝐷 ) ) )
46 45 rexlimdvv ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑒𝐸 ) → ( ∃ 𝑎𝑉𝑏𝑉 𝑒 = { 𝑎 , 𝑏 } → ( 𝐹𝑒 ) ∈ 𝐷 ) )
47 10 46 mpd ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑒𝐸 ) → ( 𝐹𝑒 ) ∈ 𝐷 )
48 47 ex ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) → ( 𝑒𝐸 → ( 𝐹𝑒 ) ∈ 𝐷 ) )
49 48 ralrimiv ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) → ∀ 𝑒𝐸 ( 𝐹𝑒 ) ∈ 𝐷 )
50 uspgrupgr ( 𝐻 ∈ USPGraph → 𝐻 ∈ UPGraph )
51 50 ad3antlr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) → 𝐻 ∈ UPGraph )
52 2 4 upgredg ( ( 𝐻 ∈ UPGraph ∧ 𝑑𝐷 ) → ∃ 𝑎𝑊𝑏𝑊 𝑑 = { 𝑎 , 𝑏 } )
53 51 52 sylan ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑑𝐷 ) → ∃ 𝑎𝑊𝑏𝑊 𝑑 = { 𝑎 , 𝑏 } )
54 f1ofo ( 𝐹 : 𝑉1-1-onto𝑊𝐹 : 𝑉onto𝑊 )
55 foelrn ( ( 𝐹 : 𝑉onto𝑊𝑎𝑊 ) → ∃ 𝑚𝑉 𝑎 = ( 𝐹𝑚 ) )
56 55 ex ( 𝐹 : 𝑉onto𝑊 → ( 𝑎𝑊 → ∃ 𝑚𝑉 𝑎 = ( 𝐹𝑚 ) ) )
57 foelrn ( ( 𝐹 : 𝑉onto𝑊𝑏𝑊 ) → ∃ 𝑛𝑉 𝑏 = ( 𝐹𝑛 ) )
58 57 ex ( 𝐹 : 𝑉onto𝑊 → ( 𝑏𝑊 → ∃ 𝑛𝑉 𝑏 = ( 𝐹𝑛 ) ) )
59 56 58 anim12d ( 𝐹 : 𝑉onto𝑊 → ( ( 𝑎𝑊𝑏𝑊 ) → ( ∃ 𝑚𝑉 𝑎 = ( 𝐹𝑚 ) ∧ ∃ 𝑛𝑉 𝑏 = ( 𝐹𝑛 ) ) ) )
60 54 59 syl ( 𝐹 : 𝑉1-1-onto𝑊 → ( ( 𝑎𝑊𝑏𝑊 ) → ( ∃ 𝑚𝑉 𝑎 = ( 𝐹𝑚 ) ∧ ∃ 𝑛𝑉 𝑏 = ( 𝐹𝑛 ) ) ) )
61 60 adantl ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) → ( ( 𝑎𝑊𝑏𝑊 ) → ( ∃ 𝑚𝑉 𝑎 = ( 𝐹𝑚 ) ∧ ∃ 𝑛𝑉 𝑏 = ( 𝐹𝑛 ) ) ) )
62 61 adantr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) → ( ( 𝑎𝑊𝑏𝑊 ) → ( ∃ 𝑚𝑉 𝑎 = ( 𝐹𝑚 ) ∧ ∃ 𝑛𝑉 𝑏 = ( 𝐹𝑛 ) ) ) )
63 62 imp ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑊𝑏𝑊 ) ) → ( ∃ 𝑚𝑉 𝑎 = ( 𝐹𝑚 ) ∧ ∃ 𝑛𝑉 𝑏 = ( 𝐹𝑛 ) ) )
64 preq12 ( ( 𝑎 = ( 𝐹𝑚 ) ∧ 𝑏 = ( 𝐹𝑛 ) ) → { 𝑎 , 𝑏 } = { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } )
65 64 eqeq2d ( ( 𝑎 = ( 𝐹𝑚 ) ∧ 𝑏 = ( 𝐹𝑛 ) ) → ( 𝑑 = { 𝑎 , 𝑏 } ↔ 𝑑 = { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } ) )
66 65 ancoms ( ( 𝑏 = ( 𝐹𝑛 ) ∧ 𝑎 = ( 𝐹𝑚 ) ) → ( 𝑑 = { 𝑎 , 𝑏 } ↔ 𝑑 = { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } ) )
67 66 adantl ( ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑊𝑏𝑊 ) ) ∧ 𝑚𝑉 ) ∧ 𝑛𝑉 ) ∧ ( 𝑏 = ( 𝐹𝑛 ) ∧ 𝑎 = ( 𝐹𝑚 ) ) ) → ( 𝑑 = { 𝑎 , 𝑏 } ↔ 𝑑 = { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } ) )
68 preq12 ( ( 𝑥 = 𝑚𝑦 = 𝑛 ) → { 𝑥 , 𝑦 } = { 𝑚 , 𝑛 } )
69 68 eleq1d ( ( 𝑥 = 𝑚𝑦 = 𝑛 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { 𝑚 , 𝑛 } ∈ 𝐸 ) )
70 fveq2 ( 𝑥 = 𝑚 → ( 𝐹𝑥 ) = ( 𝐹𝑚 ) )
71 70 adantr ( ( 𝑥 = 𝑚𝑦 = 𝑛 ) → ( 𝐹𝑥 ) = ( 𝐹𝑚 ) )
72 fveq2 ( 𝑦 = 𝑛 → ( 𝐹𝑦 ) = ( 𝐹𝑛 ) )
73 72 adantl ( ( 𝑥 = 𝑚𝑦 = 𝑛 ) → ( 𝐹𝑦 ) = ( 𝐹𝑛 ) )
74 71 73 preq12d ( ( 𝑥 = 𝑚𝑦 = 𝑛 ) → { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } = { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } )
75 74 eleq1d ( ( 𝑥 = 𝑚𝑦 = 𝑛 ) → ( { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ↔ { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } ∈ 𝐷 ) )
76 69 75 bibi12d ( ( 𝑥 = 𝑚𝑦 = 𝑛 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ↔ ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } ∈ 𝐷 ) ) )
77 76 rspc2gv ( ( 𝑚𝑉𝑛𝑉 ) → ( ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) → ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } ∈ 𝐷 ) ) )
78 77 adantl ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) → ( ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) → ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } ∈ 𝐷 ) ) )
79 24 adantl ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) → 𝐹 Fn 𝑉 )
80 79 anim1i ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) → ( 𝐹 Fn 𝑉 ∧ ( 𝑚𝑉𝑛𝑉 ) ) )
81 3anass ( ( 𝐹 Fn 𝑉𝑚𝑉𝑛𝑉 ) ↔ ( 𝐹 Fn 𝑉 ∧ ( 𝑚𝑉𝑛𝑉 ) ) )
82 80 81 sylibr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) → ( 𝐹 Fn 𝑉𝑚𝑉𝑛𝑉 ) )
83 fnimapr ( ( 𝐹 Fn 𝑉𝑚𝑉𝑛𝑉 ) → ( 𝐹 “ { 𝑚 , 𝑛 } ) = { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } )
84 82 83 syl ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) → ( 𝐹 “ { 𝑚 , 𝑛 } ) = { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } )
85 84 eqcomd ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) → { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) )
86 simpr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) ∧ ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) ) → ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) )
87 simpr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) → { 𝑚 , 𝑛 } ∈ 𝐸 )
88 reueq ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ∃! 𝑒𝐸 𝑒 = { 𝑚 , 𝑛 } )
89 87 88 sylib ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) → ∃! 𝑒𝐸 𝑒 = { 𝑚 , 𝑛 } )
90 eqcom ( { 𝑚 , 𝑛 } = 𝑒𝑒 = { 𝑚 , 𝑛 } )
91 90 reubii ( ∃! 𝑒𝐸 { 𝑚 , 𝑛 } = 𝑒 ↔ ∃! 𝑒𝐸 𝑒 = { 𝑚 , 𝑛 } )
92 89 91 sylibr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) → ∃! 𝑒𝐸 { 𝑚 , 𝑛 } = 𝑒 )
93 f1of1 ( 𝐹 : 𝑉1-1-onto𝑊𝐹 : 𝑉1-1𝑊 )
94 93 adantl ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) → 𝐹 : 𝑉1-1𝑊 )
95 94 ad5ant12 ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) ∧ 𝑒𝐸 ) → 𝐹 : 𝑉1-1𝑊 )
96 prssi ( ( 𝑚𝑉𝑛𝑉 ) → { 𝑚 , 𝑛 } ⊆ 𝑉 )
97 96 ad3antlr ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) ∧ 𝑒𝐸 ) → { 𝑚 , 𝑛 } ⊆ 𝑉 )
98 uspgruhgr ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph )
99 98 adantr ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → 𝐺 ∈ UHGraph )
100 99 ad5ant12 ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) → 𝐺 ∈ UHGraph )
101 3 eleq2i ( 𝑒𝐸𝑒 ∈ ( Edg ‘ 𝐺 ) )
102 101 biimpi ( 𝑒𝐸𝑒 ∈ ( Edg ‘ 𝐺 ) )
103 edguhgr ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) )
104 1 pweqi 𝒫 𝑉 = 𝒫 ( Vtx ‘ 𝐺 )
105 103 104 eleqtrrdi ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → 𝑒 ∈ 𝒫 𝑉 )
106 100 102 105 syl2an ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) ∧ 𝑒𝐸 ) → 𝑒 ∈ 𝒫 𝑉 )
107 106 elpwid ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) ∧ 𝑒𝐸 ) → 𝑒𝑉 )
108 f1imaeq ( ( 𝐹 : 𝑉1-1𝑊 ∧ ( { 𝑚 , 𝑛 } ⊆ 𝑉𝑒𝑉 ) ) → ( ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹𝑒 ) ↔ { 𝑚 , 𝑛 } = 𝑒 ) )
109 95 97 107 108 syl12anc ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) ∧ 𝑒𝐸 ) → ( ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹𝑒 ) ↔ { 𝑚 , 𝑛 } = 𝑒 ) )
110 109 reubidva ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) → ( ∃! 𝑒𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹𝑒 ) ↔ ∃! 𝑒𝐸 { 𝑚 , 𝑛 } = 𝑒 ) )
111 92 110 mpbird ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) → ∃! 𝑒𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹𝑒 ) )
112 111 ex ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) → ( { 𝑚 , 𝑛 } ∈ 𝐸 → ∃! 𝑒𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹𝑒 ) ) )
113 112 adantr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) ∧ ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) ) → ( { 𝑚 , 𝑛 } ∈ 𝐸 → ∃! 𝑒𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹𝑒 ) ) )
114 86 113 sylbird ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) ∧ ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) ) → ( ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 → ∃! 𝑒𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹𝑒 ) ) )
115 114 ex ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) → ( ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) → ( ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 → ∃! 𝑒𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹𝑒 ) ) ) )
116 eleq1 ( { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) → ( { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } ∈ 𝐷 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) )
117 116 bibi2d ( { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) → ( ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } ∈ 𝐷 ) ↔ ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) ) )
118 eqeq1 ( { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) → ( { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } = ( 𝐹𝑒 ) ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹𝑒 ) ) )
119 118 reubidv ( { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) → ( ∃! 𝑒𝐸 { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } = ( 𝐹𝑒 ) ↔ ∃! 𝑒𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹𝑒 ) ) )
120 116 119 imbi12d ( { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) → ( ( { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } ∈ 𝐷 → ∃! 𝑒𝐸 { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } = ( 𝐹𝑒 ) ) ↔ ( ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 → ∃! 𝑒𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹𝑒 ) ) ) )
121 117 120 imbi12d ( { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) → ( ( ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } ∈ 𝐷 ) → ( { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } ∈ 𝐷 → ∃! 𝑒𝐸 { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } = ( 𝐹𝑒 ) ) ) ↔ ( ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) → ( ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 → ∃! 𝑒𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹𝑒 ) ) ) ) )
122 115 121 syl5ibrcom ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) → ( { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) → ( ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } ∈ 𝐷 ) → ( { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } ∈ 𝐷 → ∃! 𝑒𝐸 { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } = ( 𝐹𝑒 ) ) ) ) )
123 85 122 mpd ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) → ( ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } ∈ 𝐷 ) → ( { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } ∈ 𝐷 → ∃! 𝑒𝐸 { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } = ( 𝐹𝑒 ) ) ) )
124 78 123 syld ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑚𝑉𝑛𝑉 ) ) → ( ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) → ( { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } ∈ 𝐷 → ∃! 𝑒𝐸 { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } = ( 𝐹𝑒 ) ) ) )
125 124 impancom ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) → ( ( 𝑚𝑉𝑛𝑉 ) → ( { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } ∈ 𝐷 → ∃! 𝑒𝐸 { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } = ( 𝐹𝑒 ) ) ) )
126 125 adantr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑊𝑏𝑊 ) ) → ( ( 𝑚𝑉𝑛𝑉 ) → ( { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } ∈ 𝐷 → ∃! 𝑒𝐸 { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } = ( 𝐹𝑒 ) ) ) )
127 126 impl ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑊𝑏𝑊 ) ) ∧ 𝑚𝑉 ) ∧ 𝑛𝑉 ) → ( { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } ∈ 𝐷 → ∃! 𝑒𝐸 { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } = ( 𝐹𝑒 ) ) )
128 eleq1 ( 𝑑 = { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } → ( 𝑑𝐷 ↔ { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } ∈ 𝐷 ) )
129 eqeq1 ( 𝑑 = { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } → ( 𝑑 = ( 𝐹𝑒 ) ↔ { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } = ( 𝐹𝑒 ) ) )
130 129 reubidv ( 𝑑 = { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } → ( ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ↔ ∃! 𝑒𝐸 { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } = ( 𝐹𝑒 ) ) )
131 128 130 imbi12d ( 𝑑 = { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } → ( ( 𝑑𝐷 → ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ) ↔ ( { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } ∈ 𝐷 → ∃! 𝑒𝐸 { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } = ( 𝐹𝑒 ) ) ) )
132 127 131 syl5ibrcom ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑊𝑏𝑊 ) ) ∧ 𝑚𝑉 ) ∧ 𝑛𝑉 ) → ( 𝑑 = { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } → ( 𝑑𝐷 → ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ) ) )
133 132 adantr ( ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑊𝑏𝑊 ) ) ∧ 𝑚𝑉 ) ∧ 𝑛𝑉 ) ∧ ( 𝑏 = ( 𝐹𝑛 ) ∧ 𝑎 = ( 𝐹𝑚 ) ) ) → ( 𝑑 = { ( 𝐹𝑚 ) , ( 𝐹𝑛 ) } → ( 𝑑𝐷 → ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ) ) )
134 67 133 sylbid ( ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑊𝑏𝑊 ) ) ∧ 𝑚𝑉 ) ∧ 𝑛𝑉 ) ∧ ( 𝑏 = ( 𝐹𝑛 ) ∧ 𝑎 = ( 𝐹𝑚 ) ) ) → ( 𝑑 = { 𝑎 , 𝑏 } → ( 𝑑𝐷 → ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ) ) )
135 134 exp32 ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑊𝑏𝑊 ) ) ∧ 𝑚𝑉 ) ∧ 𝑛𝑉 ) → ( 𝑏 = ( 𝐹𝑛 ) → ( 𝑎 = ( 𝐹𝑚 ) → ( 𝑑 = { 𝑎 , 𝑏 } → ( 𝑑𝐷 → ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ) ) ) ) )
136 135 rexlimdva ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑊𝑏𝑊 ) ) ∧ 𝑚𝑉 ) → ( ∃ 𝑛𝑉 𝑏 = ( 𝐹𝑛 ) → ( 𝑎 = ( 𝐹𝑚 ) → ( 𝑑 = { 𝑎 , 𝑏 } → ( 𝑑𝐷 → ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ) ) ) ) )
137 136 com23 ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑊𝑏𝑊 ) ) ∧ 𝑚𝑉 ) → ( 𝑎 = ( 𝐹𝑚 ) → ( ∃ 𝑛𝑉 𝑏 = ( 𝐹𝑛 ) → ( 𝑑 = { 𝑎 , 𝑏 } → ( 𝑑𝐷 → ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ) ) ) ) )
138 137 rexlimdva ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑊𝑏𝑊 ) ) → ( ∃ 𝑚𝑉 𝑎 = ( 𝐹𝑚 ) → ( ∃ 𝑛𝑉 𝑏 = ( 𝐹𝑛 ) → ( 𝑑 = { 𝑎 , 𝑏 } → ( 𝑑𝐷 → ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ) ) ) ) )
139 138 impd ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑊𝑏𝑊 ) ) → ( ( ∃ 𝑚𝑉 𝑎 = ( 𝐹𝑚 ) ∧ ∃ 𝑛𝑉 𝑏 = ( 𝐹𝑛 ) ) → ( 𝑑 = { 𝑎 , 𝑏 } → ( 𝑑𝐷 → ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ) ) ) )
140 63 139 mpd ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑊𝑏𝑊 ) ) → ( 𝑑 = { 𝑎 , 𝑏 } → ( 𝑑𝐷 → ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ) ) )
141 140 com23 ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎𝑊𝑏𝑊 ) ) → ( 𝑑𝐷 → ( 𝑑 = { 𝑎 , 𝑏 } → ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ) ) )
142 141 impancom ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑑𝐷 ) → ( ( 𝑎𝑊𝑏𝑊 ) → ( 𝑑 = { 𝑎 , 𝑏 } → ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ) ) )
143 142 rexlimdvv ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑑𝐷 ) → ( ∃ 𝑎𝑊𝑏𝑊 𝑑 = { 𝑎 , 𝑏 } → ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ) )
144 53 143 mpd ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑑𝐷 ) → ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) )
145 144 ralrimiva ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) → ∀ 𝑑𝐷 ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) )
146 eqid ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) = ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) )
147 146 f1ompt ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ↔ ( ∀ 𝑒𝐸 ( 𝐹𝑒 ) ∈ 𝐷 ∧ ∀ 𝑑𝐷 ∃! 𝑒𝐸 𝑑 = ( 𝐹𝑒 ) ) )
148 49 145 147 sylanbrc ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) → ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 )