| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isusgrim.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
isusgrim.w |
⊢ 𝑊 = ( Vtx ‘ 𝐻 ) |
| 3 |
|
isusgrim.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 4 |
|
isusgrim.d |
⊢ 𝐷 = ( Edg ‘ 𝐻 ) |
| 5 |
|
uspgrupgr |
⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → 𝐺 ∈ UPGraph ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → 𝐺 ∈ UPGraph ) |
| 8 |
7
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → 𝐺 ∈ UPGraph ) |
| 9 |
1 3
|
upgredg |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑒 ∈ 𝐸 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑒 = { 𝑎 , 𝑏 } ) |
| 10 |
8 9
|
sylan |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑒 ∈ 𝐸 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑒 = { 𝑎 , 𝑏 } ) |
| 11 |
|
preq12 |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) |
| 12 |
11
|
eleq1d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
| 13 |
|
fveq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 17 |
14 16
|
preq12d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ) |
| 18 |
17
|
eleq1d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐷 ) ) |
| 19 |
12 18
|
bibi12d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐷 ) ) ) |
| 20 |
19
|
rspc2gv |
⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐷 ) ) ) |
| 21 |
20
|
com12 |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐷 ) ) ) |
| 22 |
21
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐷 ) ) ) |
| 23 |
22
|
imp |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐷 ) ) |
| 24 |
|
f1ofn |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 Fn 𝑉 ) |
| 25 |
24
|
ad3antlr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝐹 Fn 𝑉 ) |
| 26 |
|
simprl |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑎 ∈ 𝑉 ) |
| 27 |
|
simpr |
⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → 𝑏 ∈ 𝑉 ) |
| 28 |
27
|
adantl |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑏 ∈ 𝑉 ) |
| 29 |
|
fnimapr |
⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝐹 “ { 𝑎 , 𝑏 } ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ) |
| 30 |
25 26 28 29
|
syl3anc |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝐹 “ { 𝑎 , 𝑏 } ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ) |
| 31 |
30
|
eqcomd |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } = ( 𝐹 “ { 𝑎 , 𝑏 } ) ) |
| 32 |
31
|
eleq1d |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐷 ↔ ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ 𝐷 ) ) |
| 33 |
23 32
|
bitrd |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ 𝐷 ) ) |
| 34 |
33
|
adantr |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑒 = { 𝑎 , 𝑏 } ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ 𝐷 ) ) |
| 35 |
34
|
biimpd |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑒 = { 𝑎 , 𝑏 } ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 → ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ 𝐷 ) ) |
| 36 |
|
eleq1 |
⊢ ( 𝑒 = { 𝑎 , 𝑏 } → ( 𝑒 ∈ 𝐸 ↔ { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
| 37 |
|
imaeq2 |
⊢ ( 𝑒 = { 𝑎 , 𝑏 } → ( 𝐹 “ 𝑒 ) = ( 𝐹 “ { 𝑎 , 𝑏 } ) ) |
| 38 |
37
|
eleq1d |
⊢ ( 𝑒 = { 𝑎 , 𝑏 } → ( ( 𝐹 “ 𝑒 ) ∈ 𝐷 ↔ ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ 𝐷 ) ) |
| 39 |
36 38
|
imbi12d |
⊢ ( 𝑒 = { 𝑎 , 𝑏 } → ( ( 𝑒 ∈ 𝐸 → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 → ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ 𝐷 ) ) ) |
| 40 |
39
|
adantl |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑒 = { 𝑎 , 𝑏 } ) → ( ( 𝑒 ∈ 𝐸 → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 → ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ 𝐷 ) ) ) |
| 41 |
35 40
|
mpbird |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑒 = { 𝑎 , 𝑏 } ) → ( 𝑒 ∈ 𝐸 → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) ) |
| 42 |
41
|
exp31 |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑒 = { 𝑎 , 𝑏 } → ( 𝑒 ∈ 𝐸 → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) ) ) ) |
| 43 |
42
|
com23 |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ( 𝑒 = { 𝑎 , 𝑏 } → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑒 ∈ 𝐸 → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) ) ) ) |
| 44 |
43
|
com24 |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ( 𝑒 ∈ 𝐸 → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑒 = { 𝑎 , 𝑏 } → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) ) ) ) |
| 45 |
44
|
imp |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑒 ∈ 𝐸 ) → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑒 = { 𝑎 , 𝑏 } → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) ) ) |
| 46 |
45
|
rexlimdvv |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑒 ∈ 𝐸 ) → ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑒 = { 𝑎 , 𝑏 } → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) ) |
| 47 |
10 46
|
mpd |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) |
| 48 |
47
|
ex |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ( 𝑒 ∈ 𝐸 → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) ) |
| 49 |
48
|
ralrimiv |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ∀ 𝑒 ∈ 𝐸 ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) |
| 50 |
|
uspgrupgr |
⊢ ( 𝐻 ∈ USPGraph → 𝐻 ∈ UPGraph ) |
| 51 |
50
|
ad3antlr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → 𝐻 ∈ UPGraph ) |
| 52 |
2 4
|
upgredg |
⊢ ( ( 𝐻 ∈ UPGraph ∧ 𝑑 ∈ 𝐷 ) → ∃ 𝑎 ∈ 𝑊 ∃ 𝑏 ∈ 𝑊 𝑑 = { 𝑎 , 𝑏 } ) |
| 53 |
51 52
|
sylan |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑑 ∈ 𝐷 ) → ∃ 𝑎 ∈ 𝑊 ∃ 𝑏 ∈ 𝑊 𝑑 = { 𝑎 , 𝑏 } ) |
| 54 |
|
f1ofo |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 : 𝑉 –onto→ 𝑊 ) |
| 55 |
|
foelrn |
⊢ ( ( 𝐹 : 𝑉 –onto→ 𝑊 ∧ 𝑎 ∈ 𝑊 ) → ∃ 𝑚 ∈ 𝑉 𝑎 = ( 𝐹 ‘ 𝑚 ) ) |
| 56 |
55
|
ex |
⊢ ( 𝐹 : 𝑉 –onto→ 𝑊 → ( 𝑎 ∈ 𝑊 → ∃ 𝑚 ∈ 𝑉 𝑎 = ( 𝐹 ‘ 𝑚 ) ) ) |
| 57 |
|
foelrn |
⊢ ( ( 𝐹 : 𝑉 –onto→ 𝑊 ∧ 𝑏 ∈ 𝑊 ) → ∃ 𝑛 ∈ 𝑉 𝑏 = ( 𝐹 ‘ 𝑛 ) ) |
| 58 |
57
|
ex |
⊢ ( 𝐹 : 𝑉 –onto→ 𝑊 → ( 𝑏 ∈ 𝑊 → ∃ 𝑛 ∈ 𝑉 𝑏 = ( 𝐹 ‘ 𝑛 ) ) ) |
| 59 |
56 58
|
anim12d |
⊢ ( 𝐹 : 𝑉 –onto→ 𝑊 → ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) → ( ∃ 𝑚 ∈ 𝑉 𝑎 = ( 𝐹 ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ 𝑉 𝑏 = ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 60 |
54 59
|
syl |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) → ( ∃ 𝑚 ∈ 𝑉 𝑎 = ( 𝐹 ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ 𝑉 𝑏 = ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 61 |
60
|
adantl |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) → ( ∃ 𝑚 ∈ 𝑉 𝑎 = ( 𝐹 ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ 𝑉 𝑏 = ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 62 |
61
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) → ( ∃ 𝑚 ∈ 𝑉 𝑎 = ( 𝐹 ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ 𝑉 𝑏 = ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 63 |
62
|
imp |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( ∃ 𝑚 ∈ 𝑉 𝑎 = ( 𝐹 ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ 𝑉 𝑏 = ( 𝐹 ‘ 𝑛 ) ) ) |
| 64 |
|
preq12 |
⊢ ( ( 𝑎 = ( 𝐹 ‘ 𝑚 ) ∧ 𝑏 = ( 𝐹 ‘ 𝑛 ) ) → { 𝑎 , 𝑏 } = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ) |
| 65 |
64
|
eqeq2d |
⊢ ( ( 𝑎 = ( 𝐹 ‘ 𝑚 ) ∧ 𝑏 = ( 𝐹 ‘ 𝑛 ) ) → ( 𝑑 = { 𝑎 , 𝑏 } ↔ 𝑑 = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ) ) |
| 66 |
65
|
ancoms |
⊢ ( ( 𝑏 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑎 = ( 𝐹 ‘ 𝑚 ) ) → ( 𝑑 = { 𝑎 , 𝑏 } ↔ 𝑑 = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ) ) |
| 67 |
66
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑛 ∈ 𝑉 ) ∧ ( 𝑏 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑎 = ( 𝐹 ‘ 𝑚 ) ) ) → ( 𝑑 = { 𝑎 , 𝑏 } ↔ 𝑑 = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ) ) |
| 68 |
|
preq12 |
⊢ ( ( 𝑥 = 𝑚 ∧ 𝑦 = 𝑛 ) → { 𝑥 , 𝑦 } = { 𝑚 , 𝑛 } ) |
| 69 |
68
|
eleq1d |
⊢ ( ( 𝑥 = 𝑚 ∧ 𝑦 = 𝑛 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { 𝑚 , 𝑛 } ∈ 𝐸 ) ) |
| 70 |
|
fveq2 |
⊢ ( 𝑥 = 𝑚 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝑥 = 𝑚 ∧ 𝑦 = 𝑛 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 72 |
|
fveq2 |
⊢ ( 𝑦 = 𝑛 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 73 |
72
|
adantl |
⊢ ( ( 𝑥 = 𝑚 ∧ 𝑦 = 𝑛 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 74 |
71 73
|
preq12d |
⊢ ( ( 𝑥 = 𝑚 ∧ 𝑦 = 𝑛 ) → { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ) |
| 75 |
74
|
eleq1d |
⊢ ( ( 𝑥 = 𝑚 ∧ 𝑦 = 𝑛 ) → ( { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 ) ) |
| 76 |
69 75
|
bibi12d |
⊢ ( ( 𝑥 = 𝑚 ∧ 𝑦 = 𝑛 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ↔ ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 ) ) ) |
| 77 |
76
|
rspc2gv |
⊢ ( ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) → ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 ) ) ) |
| 78 |
77
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) → ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 ) ) ) |
| 79 |
24
|
adantl |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → 𝐹 Fn 𝑉 ) |
| 80 |
79
|
anim1i |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( 𝐹 Fn 𝑉 ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ) |
| 81 |
|
3anass |
⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ↔ ( 𝐹 Fn 𝑉 ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ) |
| 82 |
80 81
|
sylibr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( 𝐹 Fn 𝑉 ∧ 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) |
| 83 |
|
fnimapr |
⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → ( 𝐹 “ { 𝑚 , 𝑛 } ) = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ) |
| 84 |
82 83
|
syl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( 𝐹 “ { 𝑚 , 𝑛 } ) = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ) |
| 85 |
84
|
eqcomd |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) ) |
| 86 |
|
simpr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) ) → ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) ) |
| 87 |
|
simpr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) → { 𝑚 , 𝑛 } ∈ 𝐸 ) |
| 88 |
|
reueq |
⊢ ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ∃! 𝑒 ∈ 𝐸 𝑒 = { 𝑚 , 𝑛 } ) |
| 89 |
87 88
|
sylib |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) → ∃! 𝑒 ∈ 𝐸 𝑒 = { 𝑚 , 𝑛 } ) |
| 90 |
|
eqcom |
⊢ ( { 𝑚 , 𝑛 } = 𝑒 ↔ 𝑒 = { 𝑚 , 𝑛 } ) |
| 91 |
90
|
reubii |
⊢ ( ∃! 𝑒 ∈ 𝐸 { 𝑚 , 𝑛 } = 𝑒 ↔ ∃! 𝑒 ∈ 𝐸 𝑒 = { 𝑚 , 𝑛 } ) |
| 92 |
89 91
|
sylibr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) → ∃! 𝑒 ∈ 𝐸 { 𝑚 , 𝑛 } = 𝑒 ) |
| 93 |
|
f1of1 |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
| 94 |
93
|
adantl |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
| 95 |
94
|
ad5ant12 |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) ∧ 𝑒 ∈ 𝐸 ) → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
| 96 |
|
prssi |
⊢ ( ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → { 𝑚 , 𝑛 } ⊆ 𝑉 ) |
| 97 |
96
|
ad3antlr |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) ∧ 𝑒 ∈ 𝐸 ) → { 𝑚 , 𝑛 } ⊆ 𝑉 ) |
| 98 |
|
uspgruhgr |
⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph ) |
| 99 |
98
|
adantr |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → 𝐺 ∈ UHGraph ) |
| 100 |
99
|
ad5ant12 |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) → 𝐺 ∈ UHGraph ) |
| 101 |
3
|
eleq2i |
⊢ ( 𝑒 ∈ 𝐸 ↔ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
| 102 |
101
|
biimpi |
⊢ ( 𝑒 ∈ 𝐸 → 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
| 103 |
|
edguhgr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ) |
| 104 |
1
|
pweqi |
⊢ 𝒫 𝑉 = 𝒫 ( Vtx ‘ 𝐺 ) |
| 105 |
103 104
|
eleqtrrdi |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → 𝑒 ∈ 𝒫 𝑉 ) |
| 106 |
100 102 105
|
syl2an |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ∈ 𝒫 𝑉 ) |
| 107 |
106
|
elpwid |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ⊆ 𝑉 ) |
| 108 |
|
f1imaeq |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( { 𝑚 , 𝑛 } ⊆ 𝑉 ∧ 𝑒 ⊆ 𝑉 ) ) → ( ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ↔ { 𝑚 , 𝑛 } = 𝑒 ) ) |
| 109 |
95 97 107 108
|
syl12anc |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) ∧ 𝑒 ∈ 𝐸 ) → ( ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ↔ { 𝑚 , 𝑛 } = 𝑒 ) ) |
| 110 |
109
|
reubidva |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) → ( ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ↔ ∃! 𝑒 ∈ 𝐸 { 𝑚 , 𝑛 } = 𝑒 ) ) |
| 111 |
92 110
|
mpbird |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) → ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ) |
| 112 |
111
|
ex |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( { 𝑚 , 𝑛 } ∈ 𝐸 → ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ) ) |
| 113 |
112
|
adantr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) ) → ( { 𝑚 , 𝑛 } ∈ 𝐸 → ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ) ) |
| 114 |
86 113
|
sylbird |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) ) → ( ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ) ) |
| 115 |
114
|
ex |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) → ( ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ) ) ) |
| 116 |
|
eleq1 |
⊢ ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) ) |
| 117 |
116
|
bibi2d |
⊢ ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) → ( ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 ) ↔ ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) ) ) |
| 118 |
|
eqeq1 |
⊢ ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ) ) |
| 119 |
118
|
reubidv |
⊢ ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) → ( ∃! 𝑒 ∈ 𝐸 { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ↔ ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ) ) |
| 120 |
116 119
|
imbi12d |
⊢ ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) → ( ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ) ↔ ( ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ) ) ) |
| 121 |
117 120
|
imbi12d |
⊢ ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) → ( ( ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ) ) ↔ ( ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) → ( ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ) ) ) ) |
| 122 |
115 121
|
syl5ibrcom |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) → ( ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ) ) ) ) |
| 123 |
85 122
|
mpd |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ) ) ) |
| 124 |
78 123
|
syld |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ) ) ) |
| 125 |
124
|
impancom |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ( ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ) ) ) |
| 126 |
125
|
adantr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ) ) ) |
| 127 |
126
|
impl |
⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑛 ∈ 𝑉 ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ) ) |
| 128 |
|
eleq1 |
⊢ ( 𝑑 = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } → ( 𝑑 ∈ 𝐷 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 ) ) |
| 129 |
|
eqeq1 |
⊢ ( 𝑑 = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } → ( 𝑑 = ( 𝐹 “ 𝑒 ) ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ) ) |
| 130 |
129
|
reubidv |
⊢ ( 𝑑 = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } → ( ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ↔ ∃! 𝑒 ∈ 𝐸 { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ) ) |
| 131 |
128 130
|
imbi12d |
⊢ ( 𝑑 = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } → ( ( 𝑑 ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ↔ ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ) ) ) |
| 132 |
127 131
|
syl5ibrcom |
⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑛 ∈ 𝑉 ) → ( 𝑑 = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } → ( 𝑑 ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) |
| 133 |
132
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑛 ∈ 𝑉 ) ∧ ( 𝑏 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑎 = ( 𝐹 ‘ 𝑚 ) ) ) → ( 𝑑 = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } → ( 𝑑 ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) |
| 134 |
67 133
|
sylbid |
⊢ ( ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑛 ∈ 𝑉 ) ∧ ( 𝑏 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑎 = ( 𝐹 ‘ 𝑚 ) ) ) → ( 𝑑 = { 𝑎 , 𝑏 } → ( 𝑑 ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) |
| 135 |
134
|
exp32 |
⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑛 ∈ 𝑉 ) → ( 𝑏 = ( 𝐹 ‘ 𝑛 ) → ( 𝑎 = ( 𝐹 ‘ 𝑚 ) → ( 𝑑 = { 𝑎 , 𝑏 } → ( 𝑑 ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) ) ) |
| 136 |
135
|
rexlimdva |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) ∧ 𝑚 ∈ 𝑉 ) → ( ∃ 𝑛 ∈ 𝑉 𝑏 = ( 𝐹 ‘ 𝑛 ) → ( 𝑎 = ( 𝐹 ‘ 𝑚 ) → ( 𝑑 = { 𝑎 , 𝑏 } → ( 𝑑 ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) ) ) |
| 137 |
136
|
com23 |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) ∧ 𝑚 ∈ 𝑉 ) → ( 𝑎 = ( 𝐹 ‘ 𝑚 ) → ( ∃ 𝑛 ∈ 𝑉 𝑏 = ( 𝐹 ‘ 𝑛 ) → ( 𝑑 = { 𝑎 , 𝑏 } → ( 𝑑 ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) ) ) |
| 138 |
137
|
rexlimdva |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( ∃ 𝑚 ∈ 𝑉 𝑎 = ( 𝐹 ‘ 𝑚 ) → ( ∃ 𝑛 ∈ 𝑉 𝑏 = ( 𝐹 ‘ 𝑛 ) → ( 𝑑 = { 𝑎 , 𝑏 } → ( 𝑑 ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) ) ) |
| 139 |
138
|
impd |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( ( ∃ 𝑚 ∈ 𝑉 𝑎 = ( 𝐹 ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ 𝑉 𝑏 = ( 𝐹 ‘ 𝑛 ) ) → ( 𝑑 = { 𝑎 , 𝑏 } → ( 𝑑 ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) ) |
| 140 |
63 139
|
mpd |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( 𝑑 = { 𝑎 , 𝑏 } → ( 𝑑 ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) |
| 141 |
140
|
com23 |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( 𝑑 ∈ 𝐷 → ( 𝑑 = { 𝑎 , 𝑏 } → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) |
| 142 |
141
|
impancom |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑑 ∈ 𝐷 ) → ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) → ( 𝑑 = { 𝑎 , 𝑏 } → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) |
| 143 |
142
|
rexlimdvv |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑑 ∈ 𝐷 ) → ( ∃ 𝑎 ∈ 𝑊 ∃ 𝑏 ∈ 𝑊 𝑑 = { 𝑎 , 𝑏 } → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) |
| 144 |
53 143
|
mpd |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑑 ∈ 𝐷 ) → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) |
| 145 |
144
|
ralrimiva |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ∀ 𝑑 ∈ 𝐷 ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) |
| 146 |
|
eqid |
⊢ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) = ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) |
| 147 |
146
|
f1ompt |
⊢ ( ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ↔ ( ∀ 𝑒 ∈ 𝐸 ( 𝐹 “ 𝑒 ) ∈ 𝐷 ∧ ∀ 𝑑 ∈ 𝐷 ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) |
| 148 |
49 145 147
|
sylanbrc |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) |