Step |
Hyp |
Ref |
Expression |
1 |
|
isusgrim.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
isusgrim.w |
⊢ 𝑊 = ( Vtx ‘ 𝐻 ) |
3 |
|
isusgrim.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
4 |
|
isusgrim.d |
⊢ 𝐷 = ( Edg ‘ 𝐻 ) |
5 |
1 2 3 4
|
uspgrimprop |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ) ) |
6 |
|
f1of |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 : 𝑉 ⟶ 𝑊 ) |
7 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
8 |
7
|
a1i |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝑉 ∈ V ) |
9 |
6 8
|
fexd |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 ∈ V ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → 𝐹 ∈ V ) |
11 |
|
simpllr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝐹 ∈ V ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) |
12 |
1 2 3 4
|
isuspgrimlem |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) |
13 |
12
|
adantlr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝐹 ∈ V ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) |
14 |
1 2 3 4
|
isuspgrim0 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ V ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ) |
15 |
14
|
ad5ant124 |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝐹 ∈ V ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ) |
16 |
11 13 15
|
mpbir2and |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝐹 ∈ V ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) |
17 |
16
|
ex |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝐹 ∈ V ) → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) → 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ) |
18 |
10 17
|
mpdan |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) → 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ) |
19 |
18
|
expimpd |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ) |
20 |
5 19
|
impbid |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ) ) |