Step |
Hyp |
Ref |
Expression |
1 |
|
upgredg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
upgredg.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
4 |
3
|
a1i |
⊢ ( 𝐺 ∈ UPGraph → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
5 |
2 4
|
syl5eq |
⊢ ( 𝐺 ∈ UPGraph → 𝐸 = ran ( iEdg ‘ 𝐺 ) ) |
6 |
5
|
eleq2d |
⊢ ( 𝐺 ∈ UPGraph → ( 𝐶 ∈ 𝐸 ↔ 𝐶 ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
7 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
8 |
1 7
|
upgrf |
⊢ ( 𝐺 ∈ UPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
9 |
8
|
frnd |
⊢ ( 𝐺 ∈ UPGraph → ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
10 |
9
|
sseld |
⊢ ( 𝐺 ∈ UPGraph → ( 𝐶 ∈ ran ( iEdg ‘ 𝐺 ) → 𝐶 ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
11 |
6 10
|
sylbid |
⊢ ( 𝐺 ∈ UPGraph → ( 𝐶 ∈ 𝐸 → 𝐶 ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
12 |
11
|
imp |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ) → 𝐶 ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
13 |
|
fveq2 |
⊢ ( 𝑥 = 𝐶 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐶 ) ) |
14 |
13
|
breq1d |
⊢ ( 𝑥 = 𝐶 → ( ( ♯ ‘ 𝑥 ) ≤ 2 ↔ ( ♯ ‘ 𝐶 ) ≤ 2 ) ) |
15 |
14
|
elrab |
⊢ ( 𝐶 ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ ( 𝐶 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ 𝐶 ) ≤ 2 ) ) |
16 |
|
hashle2prv |
⊢ ( 𝐶 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( ( ♯ ‘ 𝐶 ) ≤ 2 ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝑎 , 𝑏 } ) ) |
17 |
16
|
biimpa |
⊢ ( ( 𝐶 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ 𝐶 ) ≤ 2 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝑎 , 𝑏 } ) |
18 |
15 17
|
sylbi |
⊢ ( 𝐶 ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝑎 , 𝑏 } ) |
19 |
12 18
|
syl |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝑎 , 𝑏 } ) |