| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgredg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
upgredg.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
2
|
eleq2i |
⊢ ( 𝐶 ∈ 𝐸 ↔ 𝐶 ∈ ( Edg ‘ 𝐺 ) ) |
| 4 |
|
edgumgr |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐶 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) |
| 5 |
3 4
|
sylan2b |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸 ) → ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) |
| 6 |
|
hash2prde |
⊢ ( ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) → ∃ 𝑎 ∃ 𝑏 ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) ) |
| 7 |
|
eleq1 |
⊢ ( 𝐶 = { 𝑎 , 𝑏 } → ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ↔ { 𝑎 , 𝑏 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) ) ) |
| 8 |
|
prex |
⊢ { 𝑎 , 𝑏 } ∈ V |
| 9 |
8
|
elpw |
⊢ ( { 𝑎 , 𝑏 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) ↔ { 𝑎 , 𝑏 } ⊆ ( Vtx ‘ 𝐺 ) ) |
| 10 |
|
vex |
⊢ 𝑎 ∈ V |
| 11 |
|
vex |
⊢ 𝑏 ∈ V |
| 12 |
10 11
|
prss |
⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ↔ { 𝑎 , 𝑏 } ⊆ 𝑉 ) |
| 13 |
1
|
sseq2i |
⊢ ( { 𝑎 , 𝑏 } ⊆ 𝑉 ↔ { 𝑎 , 𝑏 } ⊆ ( Vtx ‘ 𝐺 ) ) |
| 14 |
12 13
|
sylbbr |
⊢ ( { 𝑎 , 𝑏 } ⊆ ( Vtx ‘ 𝐺 ) → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) |
| 15 |
9 14
|
sylbi |
⊢ ( { 𝑎 , 𝑏 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) |
| 16 |
7 15
|
biimtrdi |
⊢ ( 𝐶 = { 𝑎 , 𝑏 } → ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ) |
| 17 |
16
|
adantrd |
⊢ ( 𝐶 = { 𝑎 , 𝑏 } → ( ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) → ( ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ) |
| 19 |
18
|
imdistanri |
⊢ ( ( ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) ) → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) ) ) |
| 20 |
19
|
ex |
⊢ ( ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) → ( ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) ) ) ) |
| 21 |
20
|
2eximdv |
⊢ ( ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) → ( ∃ 𝑎 ∃ 𝑏 ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) → ∃ 𝑎 ∃ 𝑏 ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) ) ) ) |
| 22 |
6 21
|
mpd |
⊢ ( ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) → ∃ 𝑎 ∃ 𝑏 ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) ) ) |
| 23 |
5 22
|
syl |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸 ) → ∃ 𝑎 ∃ 𝑏 ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) ) ) |
| 24 |
|
r2ex |
⊢ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) ↔ ∃ 𝑎 ∃ 𝑏 ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) ) ) |
| 25 |
23 24
|
sylibr |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝐶 = { 𝑎 , 𝑏 } ) ) |