Metamath Proof Explorer


Theorem umgredg

Description: For each edge in a multigraph, there are two distinct vertices which are connected by this edge. (Contributed by Alexander van der Vekens, 9-Dec-2017) (Revised by AV, 25-Nov-2020)

Ref Expression
Hypotheses upgredg.v V=VtxG
upgredg.e E=EdgG
Assertion umgredg GUMGraphCEaVbVabC=ab

Proof

Step Hyp Ref Expression
1 upgredg.v V=VtxG
2 upgredg.e E=EdgG
3 2 eleq2i CECEdgG
4 edgumgr GUMGraphCEdgGC𝒫VtxGC=2
5 3 4 sylan2b GUMGraphCEC𝒫VtxGC=2
6 hash2prde C𝒫VtxGC=2ababC=ab
7 eleq1 C=abC𝒫VtxGab𝒫VtxG
8 prex abV
9 8 elpw ab𝒫VtxGabVtxG
10 vex aV
11 vex bV
12 10 11 prss aVbVabV
13 1 sseq2i abVabVtxG
14 12 13 sylbbr abVtxGaVbV
15 9 14 sylbi ab𝒫VtxGaVbV
16 7 15 syl6bi C=abC𝒫VtxGaVbV
17 16 adantrd C=abC𝒫VtxGC=2aVbV
18 17 adantl abC=abC𝒫VtxGC=2aVbV
19 18 imdistanri C𝒫VtxGC=2abC=abaVbVabC=ab
20 19 ex C𝒫VtxGC=2abC=abaVbVabC=ab
21 20 2eximdv C𝒫VtxGC=2ababC=ababaVbVabC=ab
22 6 21 mpd C𝒫VtxGC=2abaVbVabC=ab
23 5 22 syl GUMGraphCEabaVbVabC=ab
24 r2ex aVbVabC=ababaVbVabC=ab
25 23 24 sylibr GUMGraphCEaVbVabC=ab