Metamath Proof Explorer


Theorem upgrpredgv

Description: An edge of a pseudograph always connects two vertices if the edge contains two sets. The two vertices/sets need not necessarily be different (loops are allowed). (Contributed by AV, 18-Nov-2021)

Ref Expression
Hypotheses upgredg.v V = Vtx G
upgredg.e E = Edg G
Assertion upgrpredgv G UPGraph M U N W M N E M V N V

Proof

Step Hyp Ref Expression
1 upgredg.v V = Vtx G
2 upgredg.e E = Edg G
3 1 2 upgredg G UPGraph M N E m V n V M N = m n
4 3 3adant2 G UPGraph M U N W M N E m V n V M N = m n
5 preq12bg M U N W m V n V M N = m n M = m N = n M = n N = m
6 5 3ad2antl2 G UPGraph M U N W M N E m V n V M N = m n M = m N = n M = n N = m
7 eleq1 m = M m V M V
8 7 eqcoms M = m m V M V
9 8 biimpd M = m m V M V
10 eleq1 n = N n V N V
11 10 eqcoms N = n n V N V
12 11 biimpd N = n n V N V
13 9 12 im2anan9 M = m N = n m V n V M V N V
14 13 com12 m V n V M = m N = n M V N V
15 eleq1 n = M n V M V
16 15 eqcoms M = n n V M V
17 16 biimpd M = n n V M V
18 eleq1 m = N m V N V
19 18 eqcoms N = m m V N V
20 19 biimpd N = m m V N V
21 17 20 im2anan9 M = n N = m n V m V M V N V
22 21 com12 n V m V M = n N = m M V N V
23 22 ancoms m V n V M = n N = m M V N V
24 14 23 jaod m V n V M = m N = n M = n N = m M V N V
25 24 adantl G UPGraph M U N W M N E m V n V M = m N = n M = n N = m M V N V
26 6 25 sylbid G UPGraph M U N W M N E m V n V M N = m n M V N V
27 26 rexlimdvva G UPGraph M U N W M N E m V n V M N = m n M V N V
28 4 27 mpd G UPGraph M U N W M N E M V N V