Metamath Proof Explorer


Theorem uhgrimprop

Description: An isomorphism between hypergraphs is a bijection between their vertices that preserves adjacency for simple edges, i.e. there is a simple edge in one graph connecting one or two vertices iff there is a simple edge in the other graph connecting the vertices which are the images of the vertices. (Contributed by AV, 27-Apr-2025) (Revised by AV, 25-Oct-2025)

Ref Expression
Hypotheses uhgrimedgi.e E = Edg G
uhgrimedgi.d D = Edg H
uhgrimprop.v V = Vtx G
uhgrimprop.w W = Vtx H
Assertion uhgrimprop G UHGraph H UHGraph F G GraphIso H F : V 1-1 onto W x V y V x y E F x F y D

Proof

Step Hyp Ref Expression
1 uhgrimedgi.e E = Edg G
2 uhgrimedgi.d D = Edg H
3 uhgrimprop.v V = Vtx G
4 uhgrimprop.w W = Vtx H
5 3 4 grimf1o F G GraphIso H F : V 1-1 onto W
6 5 3ad2ant3 G UHGraph H UHGraph F G GraphIso H F : V 1-1 onto W
7 3simpa G UHGraph H UHGraph F G GraphIso H G UHGraph H UHGraph
8 simp3 G UHGraph H UHGraph F G GraphIso H F G GraphIso H
9 prssi x V y V x y V
10 9 3 sseqtrdi x V y V x y Vtx G
11 1 2 uhgrimedg G UHGraph H UHGraph F G GraphIso H x y Vtx G x y E F x y D
12 7 8 10 11 syl2an3an G UHGraph H UHGraph F G GraphIso H x V y V x y E F x y D
13 f1ofn F : V 1-1 onto W F Fn V
14 5 13 syl F G GraphIso H F Fn V
15 14 3ad2ant3 G UHGraph H UHGraph F G GraphIso H F Fn V
16 15 anim1i G UHGraph H UHGraph F G GraphIso H x V y V F Fn V x V y V
17 3anass F Fn V x V y V F Fn V x V y V
18 16 17 sylibr G UHGraph H UHGraph F G GraphIso H x V y V F Fn V x V y V
19 fnimapr F Fn V x V y V F x y = F x F y
20 18 19 syl G UHGraph H UHGraph F G GraphIso H x V y V F x y = F x F y
21 20 eleq1d G UHGraph H UHGraph F G GraphIso H x V y V F x y D F x F y D
22 12 21 bitrd G UHGraph H UHGraph F G GraphIso H x V y V x y E F x F y D
23 22 ralrimivva G UHGraph H UHGraph F G GraphIso H x V y V x y E F x F y D
24 6 23 jca G UHGraph H UHGraph F G GraphIso H F : V 1-1 onto W x V y V x y E F x F y D