| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrimwlk.i |
|- I = ( iEdg ` G ) |
| 2 |
|
upgrimwlk.j |
|- J = ( iEdg ` H ) |
| 3 |
|
upgrimwlk.g |
|- ( ph -> G e. USPGraph ) |
| 4 |
|
upgrimwlk.h |
|- ( ph -> H e. USPGraph ) |
| 5 |
|
upgrimwlk.n |
|- ( ph -> N e. ( G GraphIso H ) ) |
| 6 |
|
upgrimwlk.e |
|- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
| 7 |
|
upgrimwlk.f |
|- ( ph -> F e. Word dom I ) |
| 8 |
4
|
adantr |
|- ( ( ph /\ x e. dom F ) -> H e. USPGraph ) |
| 9 |
2
|
uspgrf1oedg |
|- ( H e. USPGraph -> J : dom J -1-1-onto-> ( Edg ` H ) ) |
| 10 |
8 9
|
syl |
|- ( ( ph /\ x e. dom F ) -> J : dom J -1-1-onto-> ( Edg ` H ) ) |
| 11 |
|
uspgruhgr |
|- ( G e. USPGraph -> G e. UHGraph ) |
| 12 |
3 11
|
syl |
|- ( ph -> G e. UHGraph ) |
| 13 |
|
uspgruhgr |
|- ( H e. USPGraph -> H e. UHGraph ) |
| 14 |
4 13
|
syl |
|- ( ph -> H e. UHGraph ) |
| 15 |
12 14
|
jca |
|- ( ph -> ( G e. UHGraph /\ H e. UHGraph ) ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ x e. dom F ) -> ( G e. UHGraph /\ H e. UHGraph ) ) |
| 17 |
5
|
adantr |
|- ( ( ph /\ x e. dom F ) -> N e. ( G GraphIso H ) ) |
| 18 |
1
|
uhgrfun |
|- ( G e. UHGraph -> Fun I ) |
| 19 |
12 18
|
syl |
|- ( ph -> Fun I ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ x e. dom F ) -> Fun I ) |
| 21 |
|
wrdf |
|- ( F e. Word dom I -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
| 22 |
21
|
ffdmd |
|- ( F e. Word dom I -> F : dom F --> dom I ) |
| 23 |
7 22
|
syl |
|- ( ph -> F : dom F --> dom I ) |
| 24 |
23
|
ffvelcdmda |
|- ( ( ph /\ x e. dom F ) -> ( F ` x ) e. dom I ) |
| 25 |
1
|
iedgedg |
|- ( ( Fun I /\ ( F ` x ) e. dom I ) -> ( I ` ( F ` x ) ) e. ( Edg ` G ) ) |
| 26 |
20 24 25
|
syl2anc |
|- ( ( ph /\ x e. dom F ) -> ( I ` ( F ` x ) ) e. ( Edg ` G ) ) |
| 27 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 28 |
|
eqid |
|- ( Edg ` H ) = ( Edg ` H ) |
| 29 |
27 28
|
uhgrimedgi |
|- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ ( N e. ( G GraphIso H ) /\ ( I ` ( F ` x ) ) e. ( Edg ` G ) ) ) -> ( N " ( I ` ( F ` x ) ) ) e. ( Edg ` H ) ) |
| 30 |
16 17 26 29
|
syl12anc |
|- ( ( ph /\ x e. dom F ) -> ( N " ( I ` ( F ` x ) ) ) e. ( Edg ` H ) ) |
| 31 |
|
f1ocnvdm |
|- ( ( J : dom J -1-1-onto-> ( Edg ` H ) /\ ( N " ( I ` ( F ` x ) ) ) e. ( Edg ` H ) ) -> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) e. dom J ) |
| 32 |
10 30 31
|
syl2anc |
|- ( ( ph /\ x e. dom F ) -> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) e. dom J ) |
| 33 |
32 6
|
fmptd |
|- ( ph -> E : dom F --> dom J ) |
| 34 |
1 2 3 4 5 6 7
|
upgrimwlklem1 |
|- ( ph -> ( # ` E ) = ( # ` F ) ) |
| 35 |
34
|
oveq2d |
|- ( ph -> ( 0 ..^ ( # ` E ) ) = ( 0 ..^ ( # ` F ) ) ) |
| 36 |
|
iswrdb |
|- ( F e. Word dom I <-> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
| 37 |
|
fdm |
|- ( F : ( 0 ..^ ( # ` F ) ) --> dom I -> dom F = ( 0 ..^ ( # ` F ) ) ) |
| 38 |
37
|
eqcomd |
|- ( F : ( 0 ..^ ( # ` F ) ) --> dom I -> ( 0 ..^ ( # ` F ) ) = dom F ) |
| 39 |
36 38
|
sylbi |
|- ( F e. Word dom I -> ( 0 ..^ ( # ` F ) ) = dom F ) |
| 40 |
7 39
|
syl |
|- ( ph -> ( 0 ..^ ( # ` F ) ) = dom F ) |
| 41 |
35 40
|
eqtrd |
|- ( ph -> ( 0 ..^ ( # ` E ) ) = dom F ) |
| 42 |
41
|
feq2d |
|- ( ph -> ( E : ( 0 ..^ ( # ` E ) ) --> dom J <-> E : dom F --> dom J ) ) |
| 43 |
33 42
|
mpbird |
|- ( ph -> E : ( 0 ..^ ( # ` E ) ) --> dom J ) |
| 44 |
|
iswrdb |
|- ( E e. Word dom J <-> E : ( 0 ..^ ( # ` E ) ) --> dom J ) |
| 45 |
43 44
|
sylibr |
|- ( ph -> E e. Word dom J ) |