Metamath Proof Explorer


Theorem upgrimwlklem2

Description: Lemma 2 for upgrimwlk . (Contributed by AV, 25-Oct-2025)

Ref Expression
Hypotheses upgrimwlk.i I = iEdg G
upgrimwlk.j J = iEdg H
upgrimwlk.g φ G USHGraph
upgrimwlk.h φ H USHGraph
upgrimwlk.n φ N G GraphIso H
upgrimwlk.e E = x dom F J -1 N I F x
upgrimwlk.f φ F Word dom I
Assertion upgrimwlklem2 φ E Word dom J

Proof

Step Hyp Ref Expression
1 upgrimwlk.i I = iEdg G
2 upgrimwlk.j J = iEdg H
3 upgrimwlk.g φ G USHGraph
4 upgrimwlk.h φ H USHGraph
5 upgrimwlk.n φ N G GraphIso H
6 upgrimwlk.e E = x dom F J -1 N I F x
7 upgrimwlk.f φ F Word dom I
8 4 adantr φ x dom F H USHGraph
9 2 uspgrf1oedg H USHGraph J : dom J 1-1 onto Edg H
10 8 9 syl φ x dom F J : dom J 1-1 onto Edg H
11 uspgruhgr G USHGraph G UHGraph
12 3 11 syl φ G UHGraph
13 uspgruhgr H USHGraph H UHGraph
14 4 13 syl φ H UHGraph
15 12 14 jca φ G UHGraph H UHGraph
16 15 adantr φ x dom F G UHGraph H UHGraph
17 5 adantr φ x dom F N G GraphIso H
18 1 uhgrfun G UHGraph Fun I
19 12 18 syl φ Fun I
20 19 adantr φ x dom F Fun I
21 wrdf F Word dom I F : 0 ..^ F dom I
22 21 ffdmd F Word dom I F : dom F dom I
23 7 22 syl φ F : dom F dom I
24 23 ffvelcdmda φ x dom F F x dom I
25 1 iedgedg Fun I F x dom I I F x Edg G
26 20 24 25 syl2anc φ x dom F I F x Edg G
27 eqid Edg G = Edg G
28 eqid Edg H = Edg H
29 27 28 uhgrimedgi G UHGraph H UHGraph N G GraphIso H I F x Edg G N I F x Edg H
30 16 17 26 29 syl12anc φ x dom F N I F x Edg H
31 f1ocnvdm J : dom J 1-1 onto Edg H N I F x Edg H J -1 N I F x dom J
32 10 30 31 syl2anc φ x dom F J -1 N I F x dom J
33 32 6 fmptd φ E : dom F dom J
34 1 2 3 4 5 6 7 upgrimwlklem1 φ E = F
35 34 oveq2d φ 0 ..^ E = 0 ..^ F
36 iswrdb F Word dom I F : 0 ..^ F dom I
37 fdm F : 0 ..^ F dom I dom F = 0 ..^ F
38 37 eqcomd F : 0 ..^ F dom I 0 ..^ F = dom F
39 36 38 sylbi F Word dom I 0 ..^ F = dom F
40 7 39 syl φ 0 ..^ F = dom F
41 35 40 eqtrd φ 0 ..^ E = dom F
42 41 feq2d φ E : 0 ..^ E dom J E : dom F dom J
43 33 42 mpbird φ E : 0 ..^ E dom J
44 iswrdb E Word dom J E : 0 ..^ E dom J
45 43 44 sylibr φ E Word dom J