| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrimwlk.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 2 |
|
upgrimwlk.j |
⊢ 𝐽 = ( iEdg ‘ 𝐻 ) |
| 3 |
|
upgrimwlk.g |
⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) |
| 4 |
|
upgrimwlk.h |
⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) |
| 5 |
|
upgrimwlk.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) |
| 6 |
|
upgrimwlk.e |
⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 7 |
|
upgrimwlk.f |
⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |
| 8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝐻 ∈ USPGraph ) |
| 9 |
2
|
uspgrf1oedg |
⊢ ( 𝐻 ∈ USPGraph → 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 11 |
|
uspgruhgr |
⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph ) |
| 12 |
3 11
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) |
| 13 |
|
uspgruhgr |
⊢ ( 𝐻 ∈ USPGraph → 𝐻 ∈ UHGraph ) |
| 14 |
4 13
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ UHGraph ) |
| 15 |
12 14
|
jca |
⊢ ( 𝜑 → ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) |
| 17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) |
| 18 |
1
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun 𝐼 ) |
| 19 |
12 18
|
syl |
⊢ ( 𝜑 → Fun 𝐼 ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → Fun 𝐼 ) |
| 21 |
|
wrdf |
⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) |
| 22 |
21
|
ffdmd |
⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 : dom 𝐹 ⟶ dom 𝐼 ) |
| 23 |
7 22
|
syl |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ dom 𝐼 ) |
| 24 |
23
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) ∈ dom 𝐼 ) |
| 25 |
1
|
iedgedg |
⊢ ( ( Fun 𝐼 ∧ ( 𝐹 ‘ 𝑥 ) ∈ dom 𝐼 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
| 26 |
20 24 25
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
| 27 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 28 |
|
eqid |
⊢ ( Edg ‘ 𝐻 ) = ( Edg ‘ 𝐻 ) |
| 29 |
27 28
|
uhgrimedgi |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 30 |
16 17 26 29
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 31 |
|
f1ocnvdm |
⊢ ( ( 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ∧ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( Edg ‘ 𝐻 ) ) → ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ dom 𝐽 ) |
| 32 |
10 30 31
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ dom 𝐽 ) |
| 33 |
32 6
|
fmptd |
⊢ ( 𝜑 → 𝐸 : dom 𝐹 ⟶ dom 𝐽 ) |
| 34 |
1 2 3 4 5 6 7
|
upgrimwlklem1 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐹 ) ) |
| 35 |
34
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐸 ) ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 36 |
|
iswrdb |
⊢ ( 𝐹 ∈ Word dom 𝐼 ↔ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) |
| 37 |
|
fdm |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 38 |
37
|
eqcomd |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = dom 𝐹 ) |
| 39 |
36 38
|
sylbi |
⊢ ( 𝐹 ∈ Word dom 𝐼 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = dom 𝐹 ) |
| 40 |
7 39
|
syl |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = dom 𝐹 ) |
| 41 |
35 40
|
eqtrd |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐸 ) ) = dom 𝐹 ) |
| 42 |
41
|
feq2d |
⊢ ( 𝜑 → ( 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ⟶ dom 𝐽 ↔ 𝐸 : dom 𝐹 ⟶ dom 𝐽 ) ) |
| 43 |
33 42
|
mpbird |
⊢ ( 𝜑 → 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ⟶ dom 𝐽 ) |
| 44 |
|
iswrdb |
⊢ ( 𝐸 ∈ Word dom 𝐽 ↔ 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ⟶ dom 𝐽 ) |
| 45 |
43 44
|
sylibr |
⊢ ( 𝜑 → 𝐸 ∈ Word dom 𝐽 ) |