Step |
Hyp |
Ref |
Expression |
1 |
|
ushggricedg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
ushggricedg.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
ushggricedg.s |
⊢ 𝐻 = 〈 𝑉 , ( I ↾ 𝐸 ) 〉 |
4 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
5 |
4
|
a1i |
⊢ ( 𝐺 ∈ USHGraph → 𝑉 ∈ V ) |
6 |
5
|
resiexd |
⊢ ( 𝐺 ∈ USHGraph → ( I ↾ 𝑉 ) ∈ V ) |
7 |
|
f1oi |
⊢ ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ 𝑉 |
8 |
7
|
a1i |
⊢ ( 𝐺 ∈ USHGraph → ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ 𝑉 ) |
9 |
3
|
fveq2i |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) |
10 |
2
|
fvexi |
⊢ 𝐸 ∈ V |
11 |
|
resiexg |
⊢ ( 𝐸 ∈ V → ( I ↾ 𝐸 ) ∈ V ) |
12 |
10 11
|
ax-mp |
⊢ ( I ↾ 𝐸 ) ∈ V |
13 |
4 12
|
pm3.2i |
⊢ ( 𝑉 ∈ V ∧ ( I ↾ 𝐸 ) ∈ V ) |
14 |
|
opvtxfv |
⊢ ( ( 𝑉 ∈ V ∧ ( I ↾ 𝐸 ) ∈ V ) → ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = 𝑉 ) |
15 |
13 14
|
mp1i |
⊢ ( 𝐺 ∈ USHGraph → ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = 𝑉 ) |
16 |
9 15
|
eqtrid |
⊢ ( 𝐺 ∈ USHGraph → ( Vtx ‘ 𝐻 ) = 𝑉 ) |
17 |
16
|
f1oeq3d |
⊢ ( 𝐺 ∈ USHGraph → ( ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ↔ ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ 𝑉 ) ) |
18 |
8 17
|
mpbird |
⊢ ( 𝐺 ∈ USHGraph → ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ) |
19 |
|
fvexd |
⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐺 ) ∈ V ) |
20 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
21 |
1 20
|
ushgrf |
⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
22 |
|
f1f1orn |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( 𝒫 𝑉 ∖ { ∅ } ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ran ( iEdg ‘ 𝐺 ) ) |
23 |
21 22
|
syl |
⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ran ( iEdg ‘ 𝐺 ) ) |
24 |
3
|
fveq2i |
⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) |
25 |
10
|
a1i |
⊢ ( 𝐺 ∈ USHGraph → 𝐸 ∈ V ) |
26 |
25
|
resiexd |
⊢ ( 𝐺 ∈ USHGraph → ( I ↾ 𝐸 ) ∈ V ) |
27 |
|
opiedgfv |
⊢ ( ( 𝑉 ∈ V ∧ ( I ↾ 𝐸 ) ∈ V ) → ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = ( I ↾ 𝐸 ) ) |
28 |
4 26 27
|
sylancr |
⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = ( I ↾ 𝐸 ) ) |
29 |
24 28
|
eqtrid |
⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐻 ) = ( I ↾ 𝐸 ) ) |
30 |
29
|
dmeqd |
⊢ ( 𝐺 ∈ USHGraph → dom ( iEdg ‘ 𝐻 ) = dom ( I ↾ 𝐸 ) ) |
31 |
|
dmresi |
⊢ dom ( I ↾ 𝐸 ) = 𝐸 |
32 |
2
|
a1i |
⊢ ( 𝐺 ∈ USHGraph → 𝐸 = ( Edg ‘ 𝐺 ) ) |
33 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
34 |
32 33
|
eqtrdi |
⊢ ( 𝐺 ∈ USHGraph → 𝐸 = ran ( iEdg ‘ 𝐺 ) ) |
35 |
31 34
|
eqtrid |
⊢ ( 𝐺 ∈ USHGraph → dom ( I ↾ 𝐸 ) = ran ( iEdg ‘ 𝐺 ) ) |
36 |
30 35
|
eqtrd |
⊢ ( 𝐺 ∈ USHGraph → dom ( iEdg ‘ 𝐻 ) = ran ( iEdg ‘ 𝐺 ) ) |
37 |
36
|
f1oeq3d |
⊢ ( 𝐺 ∈ USHGraph → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ran ( iEdg ‘ 𝐺 ) ) ) |
38 |
23 37
|
mpbird |
⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) |
39 |
|
ushgruhgr |
⊢ ( 𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph ) |
40 |
1 20
|
uhgrss |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑉 ) |
41 |
39 40
|
sylan |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑉 ) |
42 |
|
resiima |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑉 → ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
43 |
41 42
|
syl |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
44 |
|
f1f |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( 𝒫 𝑉 ∖ { ∅ } ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
45 |
21 44
|
syl |
⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
46 |
45
|
ffund |
⊢ ( 𝐺 ∈ USHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
47 |
|
fvelrn |
⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐺 ) ) |
48 |
46 47
|
sylan |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐺 ) ) |
49 |
2 33
|
eqtri |
⊢ 𝐸 = ran ( iEdg ‘ 𝐺 ) |
50 |
48 49
|
eleqtrrdi |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐸 ) |
51 |
|
fvresi |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐸 → ( ( I ↾ 𝐸 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
52 |
50 51
|
syl |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( I ↾ 𝐸 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
53 |
10
|
a1i |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → 𝐸 ∈ V ) |
54 |
53
|
resiexd |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( I ↾ 𝐸 ) ∈ V ) |
55 |
4 54 27
|
sylancr |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = ( I ↾ 𝐸 ) ) |
56 |
24 55
|
eqtr2id |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( I ↾ 𝐸 ) = ( iEdg ‘ 𝐻 ) ) |
57 |
56
|
fveq1d |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( I ↾ 𝐸 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
58 |
43 52 57
|
3eqtr2d |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
59 |
58
|
ralrimiva |
⊢ ( 𝐺 ∈ USHGraph → ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
60 |
38 59
|
jca |
⊢ ( 𝐺 ∈ USHGraph → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
61 |
|
f1oeq1 |
⊢ ( 𝑔 = ( iEdg ‘ 𝐺 ) → ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ) |
62 |
|
fveq1 |
⊢ ( 𝑔 = ( iEdg ‘ 𝐺 ) → ( 𝑔 ‘ 𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
63 |
62
|
fveq2d |
⊢ ( 𝑔 = ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
64 |
63
|
eqeq2d |
⊢ ( 𝑔 = ( iEdg ‘ 𝐺 ) → ( ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
65 |
64
|
ralbidv |
⊢ ( 𝑔 = ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
66 |
61 65
|
anbi12d |
⊢ ( 𝑔 = ( iEdg ‘ 𝐺 ) → ( ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
67 |
19 60 66
|
spcedv |
⊢ ( 𝐺 ∈ USHGraph → ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
68 |
18 67
|
jca |
⊢ ( 𝐺 ∈ USHGraph → ( ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
69 |
|
f1oeq1 |
⊢ ( 𝑓 = ( I ↾ 𝑉 ) → ( 𝑓 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ↔ ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ) |
70 |
|
imaeq1 |
⊢ ( 𝑓 = ( I ↾ 𝑉 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
71 |
70
|
eqeq1d |
⊢ ( 𝑓 = ( I ↾ 𝑉 ) → ( ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
72 |
71
|
ralbidv |
⊢ ( 𝑓 = ( I ↾ 𝑉 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
73 |
72
|
anbi2d |
⊢ ( 𝑓 = ( I ↾ 𝑉 ) → ( ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
74 |
73
|
exbidv |
⊢ ( 𝑓 = ( I ↾ 𝑉 ) → ( ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
75 |
69 74
|
anbi12d |
⊢ ( 𝑓 = ( I ↾ 𝑉 ) → ( ( 𝑓 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ↔ ( ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
76 |
6 68 75
|
spcedv |
⊢ ( 𝐺 ∈ USHGraph → ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
77 |
|
opex |
⊢ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ∈ V |
78 |
3 77
|
eqeltri |
⊢ 𝐻 ∈ V |
79 |
|
eqid |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) |
80 |
|
eqid |
⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) |
81 |
1 79 20 80
|
dfgric2 |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝐻 ∈ V ) → ( 𝐺 ≃𝑔𝑟 𝐻 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
82 |
78 81
|
mpan2 |
⊢ ( 𝐺 ∈ USHGraph → ( 𝐺 ≃𝑔𝑟 𝐻 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
83 |
76 82
|
mpbird |
⊢ ( 𝐺 ∈ USHGraph → 𝐺 ≃𝑔𝑟 𝐻 ) |