Step |
Hyp |
Ref |
Expression |
1 |
|
opstrgric.g |
|- G = <. V , E >. |
2 |
|
opstrgric.h |
|- H = { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } |
3 |
|
simp1 |
|- ( ( G e. UHGraph /\ V e. X /\ E e. Y ) -> G e. UHGraph ) |
4 |
|
prex |
|- { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } e. _V |
5 |
2 4
|
eqeltri |
|- H e. _V |
6 |
5
|
a1i |
|- ( ( G e. UHGraph /\ V e. X /\ E e. Y ) -> H e. _V ) |
7 |
|
opvtxfv |
|- ( ( V e. X /\ E e. Y ) -> ( Vtx ` <. V , E >. ) = V ) |
8 |
7
|
3adant1 |
|- ( ( G e. UHGraph /\ V e. X /\ E e. Y ) -> ( Vtx ` <. V , E >. ) = V ) |
9 |
1
|
fveq2i |
|- ( Vtx ` G ) = ( Vtx ` <. V , E >. ) |
10 |
9
|
a1i |
|- ( ( G e. UHGraph /\ V e. X /\ E e. Y ) -> ( Vtx ` G ) = ( Vtx ` <. V , E >. ) ) |
11 |
2
|
struct2grvtx |
|- ( ( V e. X /\ E e. Y ) -> ( Vtx ` H ) = V ) |
12 |
11
|
3adant1 |
|- ( ( G e. UHGraph /\ V e. X /\ E e. Y ) -> ( Vtx ` H ) = V ) |
13 |
8 10 12
|
3eqtr4d |
|- ( ( G e. UHGraph /\ V e. X /\ E e. Y ) -> ( Vtx ` G ) = ( Vtx ` H ) ) |
14 |
|
opiedgfv |
|- ( ( V e. X /\ E e. Y ) -> ( iEdg ` <. V , E >. ) = E ) |
15 |
14
|
3adant1 |
|- ( ( G e. UHGraph /\ V e. X /\ E e. Y ) -> ( iEdg ` <. V , E >. ) = E ) |
16 |
1
|
fveq2i |
|- ( iEdg ` G ) = ( iEdg ` <. V , E >. ) |
17 |
16
|
a1i |
|- ( ( G e. UHGraph /\ V e. X /\ E e. Y ) -> ( iEdg ` G ) = ( iEdg ` <. V , E >. ) ) |
18 |
2
|
struct2griedg |
|- ( ( V e. X /\ E e. Y ) -> ( iEdg ` H ) = E ) |
19 |
18
|
3adant1 |
|- ( ( G e. UHGraph /\ V e. X /\ E e. Y ) -> ( iEdg ` H ) = E ) |
20 |
15 17 19
|
3eqtr4d |
|- ( ( G e. UHGraph /\ V e. X /\ E e. Y ) -> ( iEdg ` G ) = ( iEdg ` H ) ) |
21 |
|
simpl |
|- ( ( G e. UHGraph /\ H e. _V ) -> G e. UHGraph ) |
22 |
21
|
adantr |
|- ( ( ( G e. UHGraph /\ H e. _V ) /\ ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) ) ) -> G e. UHGraph ) |
23 |
|
simpr |
|- ( ( G e. UHGraph /\ H e. _V ) -> H e. _V ) |
24 |
23
|
adantr |
|- ( ( ( G e. UHGraph /\ H e. _V ) /\ ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) ) ) -> H e. _V ) |
25 |
|
simpl |
|- ( ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) ) -> ( Vtx ` G ) = ( Vtx ` H ) ) |
26 |
25
|
adantl |
|- ( ( ( G e. UHGraph /\ H e. _V ) /\ ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) ) ) -> ( Vtx ` G ) = ( Vtx ` H ) ) |
27 |
|
simpr |
|- ( ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) ) -> ( iEdg ` G ) = ( iEdg ` H ) ) |
28 |
27
|
adantl |
|- ( ( ( G e. UHGraph /\ H e. _V ) /\ ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) ) ) -> ( iEdg ` G ) = ( iEdg ` H ) ) |
29 |
22 24 26 28
|
grimidvtxedg |
|- ( ( ( G e. UHGraph /\ H e. _V ) /\ ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) ) ) -> ( _I |` ( Vtx ` G ) ) e. ( G GraphIso H ) ) |
30 |
|
brgrici |
|- ( ( _I |` ( Vtx ` G ) ) e. ( G GraphIso H ) -> G ~=gr H ) |
31 |
29 30
|
syl |
|- ( ( ( G e. UHGraph /\ H e. _V ) /\ ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) ) ) -> G ~=gr H ) |
32 |
3 6 13 20 31
|
syl22anc |
|- ( ( G e. UHGraph /\ V e. X /\ E e. Y ) -> G ~=gr H ) |