| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brinxper.r |
⊢ ( 𝑥 ∈ 𝑉 → 𝑥 ∼ 𝑥 ) |
| 2 |
|
brinxper.s |
⊢ ( 𝑥 ∈ 𝑉 → ( 𝑥 ∼ 𝑦 → 𝑦 ∼ 𝑥 ) ) |
| 3 |
|
brinxper.t |
⊢ ( 𝑥 ∈ 𝑉 → ( ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) → 𝑥 ∼ 𝑧 ) ) |
| 4 |
|
relinxp |
⊢ Rel ( ∼ ∩ ( 𝑉 × 𝑉 ) ) |
| 5 |
|
brxp |
⊢ ( 𝑥 ( 𝑉 × 𝑉 ) 𝑦 ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) |
| 6 |
2
|
adantr |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ∼ 𝑦 → 𝑦 ∼ 𝑥 ) ) |
| 7 |
|
ancom |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ↔ ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) ) |
| 8 |
|
brxp |
⊢ ( 𝑦 ( 𝑉 × 𝑉 ) 𝑥 ↔ ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) ) |
| 9 |
7 8
|
sylbb2 |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ( 𝑉 × 𝑉 ) 𝑥 ) |
| 10 |
6 9
|
jctird |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ∼ 𝑦 → ( 𝑦 ∼ 𝑥 ∧ 𝑦 ( 𝑉 × 𝑉 ) 𝑥 ) ) ) |
| 11 |
5 10
|
sylbi |
⊢ ( 𝑥 ( 𝑉 × 𝑉 ) 𝑦 → ( 𝑥 ∼ 𝑦 → ( 𝑦 ∼ 𝑥 ∧ 𝑦 ( 𝑉 × 𝑉 ) 𝑥 ) ) ) |
| 12 |
11
|
impcom |
⊢ ( ( 𝑥 ∼ 𝑦 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑦 ) → ( 𝑦 ∼ 𝑥 ∧ 𝑦 ( 𝑉 × 𝑉 ) 𝑥 ) ) |
| 13 |
|
brin |
⊢ ( 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑦 ↔ ( 𝑥 ∼ 𝑦 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑦 ) ) |
| 14 |
|
brin |
⊢ ( 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑥 ↔ ( 𝑦 ∼ 𝑥 ∧ 𝑦 ( 𝑉 × 𝑉 ) 𝑥 ) ) |
| 15 |
12 13 14
|
3imtr4i |
⊢ ( 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑦 → 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑥 ) |
| 16 |
|
brin |
⊢ ( 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 ↔ ( 𝑦 ∼ 𝑧 ∧ 𝑦 ( 𝑉 × 𝑉 ) 𝑧 ) ) |
| 17 |
|
brxp |
⊢ ( 𝑦 ( 𝑉 × 𝑉 ) 𝑧 ↔ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) |
| 18 |
3
|
expd |
⊢ ( 𝑥 ∈ 𝑉 → ( 𝑥 ∼ 𝑦 → ( 𝑦 ∼ 𝑧 → 𝑥 ∼ 𝑧 ) ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ∼ 𝑦 → ( 𝑦 ∼ 𝑧 → 𝑥 ∼ 𝑧 ) ) ) |
| 20 |
19
|
impcom |
⊢ ( ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑦 ∼ 𝑧 → 𝑥 ∼ 𝑧 ) ) |
| 21 |
20
|
com12 |
⊢ ( 𝑦 ∼ 𝑧 → ( ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑥 ∼ 𝑧 ) ) |
| 22 |
21
|
adantl |
⊢ ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ∧ 𝑦 ∼ 𝑧 ) → ( ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑥 ∼ 𝑧 ) ) |
| 23 |
22
|
imp |
⊢ ( ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ∧ 𝑦 ∼ 𝑧 ) ∧ ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) → 𝑥 ∼ 𝑧 ) |
| 24 |
|
simplr |
⊢ ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ∧ 𝑦 ∼ 𝑧 ) → 𝑧 ∈ 𝑉 ) |
| 25 |
|
simprl |
⊢ ( ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑥 ∈ 𝑉 ) |
| 26 |
24 25
|
anim12ci |
⊢ ( ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ∧ 𝑦 ∼ 𝑧 ) ∧ ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) → ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) |
| 27 |
23 26
|
jca |
⊢ ( ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ∧ 𝑦 ∼ 𝑧 ) ∧ ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) → ( 𝑥 ∼ 𝑧 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ) |
| 28 |
27
|
exp31 |
⊢ ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( 𝑦 ∼ 𝑧 → ( ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 ∼ 𝑧 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ) ) ) |
| 29 |
17 28
|
sylbi |
⊢ ( 𝑦 ( 𝑉 × 𝑉 ) 𝑧 → ( 𝑦 ∼ 𝑧 → ( ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 ∼ 𝑧 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ) ) ) |
| 30 |
29
|
impcom |
⊢ ( ( 𝑦 ∼ 𝑧 ∧ 𝑦 ( 𝑉 × 𝑉 ) 𝑧 ) → ( ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 ∼ 𝑧 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ) ) |
| 31 |
5
|
anbi2i |
⊢ ( ( 𝑥 ∼ 𝑦 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑦 ) ↔ ( 𝑥 ∼ 𝑦 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) |
| 32 |
|
brxp |
⊢ ( 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) |
| 33 |
32
|
anbi2i |
⊢ ( ( 𝑥 ∼ 𝑧 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ) ↔ ( 𝑥 ∼ 𝑧 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ) |
| 34 |
30 31 33
|
3imtr4g |
⊢ ( ( 𝑦 ∼ 𝑧 ∧ 𝑦 ( 𝑉 × 𝑉 ) 𝑧 ) → ( ( 𝑥 ∼ 𝑦 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑦 ) → ( 𝑥 ∼ 𝑧 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ) ) ) |
| 35 |
16 34
|
sylbi |
⊢ ( 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 → ( ( 𝑥 ∼ 𝑦 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑦 ) → ( 𝑥 ∼ 𝑧 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ) ) ) |
| 36 |
35
|
com12 |
⊢ ( ( 𝑥 ∼ 𝑦 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑦 ) → ( 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 → ( 𝑥 ∼ 𝑧 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ) ) ) |
| 37 |
13 36
|
sylbi |
⊢ ( 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑦 → ( 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 → ( 𝑥 ∼ 𝑧 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ) ) ) |
| 38 |
37
|
imp |
⊢ ( ( 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑦 ∧ 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 ) → ( 𝑥 ∼ 𝑧 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ) ) |
| 39 |
|
brin |
⊢ ( 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 ↔ ( 𝑥 ∼ 𝑧 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑧 ) ) |
| 40 |
38 39
|
sylibr |
⊢ ( ( 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑦 ∧ 𝑦 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 ) → 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑧 ) |
| 41 |
|
id |
⊢ ( 𝑥 ∈ 𝑉 → 𝑥 ∈ 𝑉 ) |
| 42 |
|
brxp |
⊢ ( 𝑥 ( 𝑉 × 𝑉 ) 𝑥 ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) ) |
| 43 |
41 41 42
|
sylanbrc |
⊢ ( 𝑥 ∈ 𝑉 → 𝑥 ( 𝑉 × 𝑉 ) 𝑥 ) |
| 44 |
1 43
|
jca |
⊢ ( 𝑥 ∈ 𝑉 → ( 𝑥 ∼ 𝑥 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑥 ) ) |
| 45 |
42
|
simplbi |
⊢ ( 𝑥 ( 𝑉 × 𝑉 ) 𝑥 → 𝑥 ∈ 𝑉 ) |
| 46 |
45
|
adantl |
⊢ ( ( 𝑥 ∼ 𝑥 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑥 ) → 𝑥 ∈ 𝑉 ) |
| 47 |
44 46
|
impbii |
⊢ ( 𝑥 ∈ 𝑉 ↔ ( 𝑥 ∼ 𝑥 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑥 ) ) |
| 48 |
|
brin |
⊢ ( 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑥 ↔ ( 𝑥 ∼ 𝑥 ∧ 𝑥 ( 𝑉 × 𝑉 ) 𝑥 ) ) |
| 49 |
47 48
|
bitr4i |
⊢ ( 𝑥 ∈ 𝑉 ↔ 𝑥 ( ∼ ∩ ( 𝑉 × 𝑉 ) ) 𝑥 ) |
| 50 |
4 15 40 49
|
iseri |
⊢ ( ∼ ∩ ( 𝑉 × 𝑉 ) ) Er 𝑉 |