Step |
Hyp |
Ref |
Expression |
1 |
|
dfgrlic2.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
dfgrlic2.w |
⊢ 𝑊 = ( Vtx ‘ 𝐻 ) |
3 |
|
brgrlic |
⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ( 𝐺 GraphLocIso 𝐻 ) ≠ ∅ ) |
4 |
|
n0 |
⊢ ( ( 𝐺 GraphLocIso 𝐻 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) |
5 |
3 4
|
bitri |
⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃ 𝑓 𝑓 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) |
6 |
1 2
|
isgrlim |
⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝑓 ∈ V ) → ( 𝑓 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ) ) |
7 |
6
|
el3v3 |
⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) → ( 𝑓 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ) ) |
8 |
7
|
exbidv |
⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) → ( ∃ 𝑓 𝑓 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ) ) |
9 |
5 8
|
bitrid |
⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) → ( 𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ) ) |