Step |
Hyp |
Ref |
Expression |
1 |
|
isgrlim.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
isgrlim.w |
⊢ 𝑊 = ( Vtx ‘ 𝐻 ) |
3 |
|
df-grlim |
⊢ GraphLocIso = ( 𝑔 ∈ V , ℎ ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) } ) |
4 |
|
elex |
⊢ ( 𝐺 ∈ 𝑋 → 𝐺 ∈ V ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) → 𝐺 ∈ V ) |
6 |
|
elex |
⊢ ( 𝐻 ∈ 𝑌 → 𝐻 ∈ V ) |
7 |
6
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) → 𝐻 ∈ V ) |
8 |
|
f1of |
⊢ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝑓 : ( Vtx ‘ 𝐺 ) ⟶ ( Vtx ‘ 𝐻 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) → 𝑓 : ( Vtx ‘ 𝐺 ) ⟶ ( Vtx ‘ 𝐻 ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) ∧ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ) → 𝑓 : ( Vtx ‘ 𝐺 ) ⟶ ( Vtx ‘ 𝐻 ) ) |
11 |
|
fvexd |
⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) → ( Vtx ‘ 𝐺 ) ∈ V ) |
12 |
|
fvexd |
⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) → ( Vtx ‘ 𝐻 ) ∈ V ) |
13 |
10 11 12
|
fabexd |
⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) → { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) } ∈ V ) |
14 |
|
eqidd |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → 𝑓 = 𝑓 ) |
15 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) |
17 |
|
fveq2 |
⊢ ( ℎ = 𝐻 → ( Vtx ‘ ℎ ) = ( Vtx ‘ 𝐻 ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( Vtx ‘ ℎ ) = ( Vtx ‘ 𝐻 ) ) |
19 |
14 16 18
|
f1oeq123d |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ↔ 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ) |
20 |
|
id |
⊢ ( 𝑔 = 𝐺 → 𝑔 = 𝐺 ) |
21 |
|
oveq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 ClNeighbVtx 𝑣 ) = ( 𝐺 ClNeighbVtx 𝑣 ) ) |
22 |
20 21
|
oveq12d |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) = ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ) |
23 |
|
id |
⊢ ( ℎ = 𝐻 → ℎ = 𝐻 ) |
24 |
|
oveq1 |
⊢ ( ℎ = 𝐻 → ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) = ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) |
25 |
23 24
|
oveq12d |
⊢ ( ℎ = 𝐻 → ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) = ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) |
26 |
22 25
|
breqan12d |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ↔ ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ) |
27 |
16 26
|
raleqbidv |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ↔ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ) |
28 |
19 27
|
anbi12d |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ↔ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ) ) |
29 |
28
|
abbidv |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) } = { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) } ) |
30 |
3 5 7 13 29
|
elovmpod |
⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ 𝐹 ∈ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) } ) ) |
31 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ↔ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ) |
32 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑣 ) ) |
33 |
32
|
oveq2d |
⊢ ( 𝑓 = 𝐹 → ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) |
34 |
33
|
oveq2d |
⊢ ( 𝑓 = 𝐹 → ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) = ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ) |
35 |
34
|
breq2d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ↔ ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ) ) |
36 |
35
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ↔ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ) ) |
37 |
31 36
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ↔ ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ) ) ) |
38 |
37
|
elabg |
⊢ ( 𝐹 ∈ 𝑍 → ( 𝐹 ∈ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) } ↔ ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ) ) ) |
39 |
38
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) → ( 𝐹 ∈ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) } ↔ ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ) ) ) |
40 |
|
f1oeq23 |
⊢ ( ( 𝑉 = ( Vtx ‘ 𝐺 ) ∧ 𝑊 = ( Vtx ‘ 𝐻 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ↔ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ) |
41 |
1 2 40
|
mp2an |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ↔ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) |
42 |
1
|
raleqi |
⊢ ( ∀ 𝑣 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ↔ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ) |
43 |
41 42
|
anbi12i |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ) ↔ ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ) ) |
44 |
39 43
|
bitr4di |
⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) → ( 𝐹 ∈ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) } ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ) ) ) |
45 |
30 44
|
bitrd |
⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ) ) ) |