| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cgrlim |
⊢ GraphLocIso |
| 1 |
|
vg |
⊢ 𝑔 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vh |
⊢ ℎ |
| 4 |
|
vf |
⊢ 𝑓 |
| 5 |
4
|
cv |
⊢ 𝑓 |
| 6 |
|
cvtx |
⊢ Vtx |
| 7 |
1
|
cv |
⊢ 𝑔 |
| 8 |
7 6
|
cfv |
⊢ ( Vtx ‘ 𝑔 ) |
| 9 |
3
|
cv |
⊢ ℎ |
| 10 |
9 6
|
cfv |
⊢ ( Vtx ‘ ℎ ) |
| 11 |
8 10 5
|
wf1o |
⊢ 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) |
| 12 |
|
vv |
⊢ 𝑣 |
| 13 |
|
cisubgr |
⊢ ISubGr |
| 14 |
|
cclnbgr |
⊢ ClNeighbVtx |
| 15 |
12
|
cv |
⊢ 𝑣 |
| 16 |
7 15 14
|
co |
⊢ ( 𝑔 ClNeighbVtx 𝑣 ) |
| 17 |
7 16 13
|
co |
⊢ ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) |
| 18 |
|
cgric |
⊢ ≃𝑔𝑟 |
| 19 |
15 5
|
cfv |
⊢ ( 𝑓 ‘ 𝑣 ) |
| 20 |
9 19 14
|
co |
⊢ ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) |
| 21 |
9 20 13
|
co |
⊢ ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) |
| 22 |
17 21 18
|
wbr |
⊢ ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) |
| 23 |
22 12 8
|
wral |
⊢ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) |
| 24 |
11 23
|
wa |
⊢ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) |
| 25 |
24 4
|
cab |
⊢ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) } |
| 26 |
1 3 2 2 25
|
cmpo |
⊢ ( 𝑔 ∈ V , ℎ ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) } ) |
| 27 |
0 26
|
wceq |
⊢ GraphLocIso = ( 𝑔 ∈ V , ℎ ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) } ) |