Step |
Hyp |
Ref |
Expression |
0 |
|
cgrlim |
⊢ GraphLocIso |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cvv |
⊢ V |
3 |
|
vh |
⊢ ℎ |
4 |
|
vf |
⊢ 𝑓 |
5 |
4
|
cv |
⊢ 𝑓 |
6 |
|
cvtx |
⊢ Vtx |
7 |
1
|
cv |
⊢ 𝑔 |
8 |
7 6
|
cfv |
⊢ ( Vtx ‘ 𝑔 ) |
9 |
3
|
cv |
⊢ ℎ |
10 |
9 6
|
cfv |
⊢ ( Vtx ‘ ℎ ) |
11 |
8 10 5
|
wf1o |
⊢ 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) |
12 |
|
vv |
⊢ 𝑣 |
13 |
|
cisubgr |
⊢ ISubGr |
14 |
|
cclnbgr |
⊢ ClNeighbVtx |
15 |
12
|
cv |
⊢ 𝑣 |
16 |
7 15 14
|
co |
⊢ ( 𝑔 ClNeighbVtx 𝑣 ) |
17 |
7 16 13
|
co |
⊢ ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) |
18 |
|
cgric |
⊢ ≃𝑔𝑟 |
19 |
15 5
|
cfv |
⊢ ( 𝑓 ‘ 𝑣 ) |
20 |
9 19 14
|
co |
⊢ ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) |
21 |
9 20 13
|
co |
⊢ ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) |
22 |
17 21 18
|
wbr |
⊢ ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) |
23 |
22 12 8
|
wral |
⊢ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) |
24 |
11 23
|
wa |
⊢ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) |
25 |
24 4
|
cab |
⊢ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) } |
26 |
1 3 2 2 25
|
cmpo |
⊢ ( 𝑔 ∈ V , ℎ ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) } ) |
27 |
0 26
|
wceq |
⊢ GraphLocIso = ( 𝑔 ∈ V , ℎ ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) } ) |