Step |
Hyp |
Ref |
Expression |
1 |
|
df-grlim |
⊢ GraphLocIso = ( 𝑔 ∈ V , ℎ ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) } ) |
2 |
|
fvex |
⊢ ( Vtx ‘ ℎ ) ∈ V |
3 |
|
f1of |
⊢ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) → 𝑓 : ( Vtx ‘ 𝑔 ) ⟶ ( Vtx ‘ ℎ ) ) |
4 |
3
|
ad2antrl |
⊢ ( ( ( Vtx ‘ ℎ ) ∈ V ∧ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ) → 𝑓 : ( Vtx ‘ 𝑔 ) ⟶ ( Vtx ‘ ℎ ) ) |
5 |
|
fvexd |
⊢ ( ( Vtx ‘ ℎ ) ∈ V → ( Vtx ‘ 𝑔 ) ∈ V ) |
6 |
|
id |
⊢ ( ( Vtx ‘ ℎ ) ∈ V → ( Vtx ‘ ℎ ) ∈ V ) |
7 |
4 5 6
|
fabexd |
⊢ ( ( Vtx ‘ ℎ ) ∈ V → { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) } ∈ V ) |
8 |
2 7
|
ax-mp |
⊢ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ℎ ISubGr ( ℎ ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) } ∈ V |
9 |
1 8
|
fnmpoi |
⊢ GraphLocIso Fn ( V × V ) |