Metamath Proof Explorer


Theorem grlimfn

Description: The graph local isomorphism function is a well-defined function. (Contributed by AV, 20-May-2025)

Ref Expression
Assertion grlimfn GraphLocIso Fn ( V × V )

Proof

Step Hyp Ref Expression
1 df-grlim GraphLocIso = ( 𝑔 ∈ V , ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ISubGr ( ClNeighbVtx ( 𝑓𝑣 ) ) ) ) } )
2 fvex ( Vtx ‘ ) ∈ V
3 f1of ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ) → 𝑓 : ( Vtx ‘ 𝑔 ) ⟶ ( Vtx ‘ ) )
4 3 ad2antrl ( ( ( Vtx ‘ ) ∈ V ∧ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ISubGr ( ClNeighbVtx ( 𝑓𝑣 ) ) ) ) ) → 𝑓 : ( Vtx ‘ 𝑔 ) ⟶ ( Vtx ‘ ) )
5 fvexd ( ( Vtx ‘ ) ∈ V → ( Vtx ‘ 𝑔 ) ∈ V )
6 id ( ( Vtx ‘ ) ∈ V → ( Vtx ‘ ) ∈ V )
7 4 5 6 fabexd ( ( Vtx ‘ ) ∈ V → { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ISubGr ( ClNeighbVtx ( 𝑓𝑣 ) ) ) ) } ∈ V )
8 2 7 ax-mp { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ISubGr ( ClNeighbVtx ( 𝑓𝑣 ) ) ) ) } ∈ V
9 1 8 fnmpoi GraphLocIso Fn ( V × V )