Step |
Hyp |
Ref |
Expression |
1 |
|
df-grlim |
|- GraphLocIso = ( g e. _V , h e. _V |-> { f | ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ A. v e. ( Vtx ` g ) ( g ISubGr ( g ClNeighbVtx v ) ) ~=gr ( h ISubGr ( h ClNeighbVtx ( f ` v ) ) ) ) } ) |
2 |
|
fvex |
|- ( Vtx ` h ) e. _V |
3 |
|
f1of |
|- ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) -> f : ( Vtx ` g ) --> ( Vtx ` h ) ) |
4 |
3
|
ad2antrl |
|- ( ( ( Vtx ` h ) e. _V /\ ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ A. v e. ( Vtx ` g ) ( g ISubGr ( g ClNeighbVtx v ) ) ~=gr ( h ISubGr ( h ClNeighbVtx ( f ` v ) ) ) ) ) -> f : ( Vtx ` g ) --> ( Vtx ` h ) ) |
5 |
|
fvexd |
|- ( ( Vtx ` h ) e. _V -> ( Vtx ` g ) e. _V ) |
6 |
|
id |
|- ( ( Vtx ` h ) e. _V -> ( Vtx ` h ) e. _V ) |
7 |
4 5 6
|
fabexd |
|- ( ( Vtx ` h ) e. _V -> { f | ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ A. v e. ( Vtx ` g ) ( g ISubGr ( g ClNeighbVtx v ) ) ~=gr ( h ISubGr ( h ClNeighbVtx ( f ` v ) ) ) ) } e. _V ) |
8 |
2 7
|
ax-mp |
|- { f | ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ A. v e. ( Vtx ` g ) ( g ISubGr ( g ClNeighbVtx v ) ) ~=gr ( h ISubGr ( h ClNeighbVtx ( f ` v ) ) ) ) } e. _V |
9 |
1 8
|
fnmpoi |
|- GraphLocIso Fn ( _V X. _V ) |