Metamath Proof Explorer


Theorem grlimdmrel

Description: The domain of the graph local isomorphism function is a relation. (Contributed by AV, 20-May-2025)

Ref Expression
Assertion grlimdmrel
|- Rel dom GraphLocIso

Proof

Step Hyp Ref Expression
1 df-grlim
 |-  GraphLocIso = ( g e. _V , h e. _V |-> { f | ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ A. v e. ( Vtx ` g ) ( g ISubGr ( g ClNeighbVtx v ) ) ~=gr ( h ISubGr ( h ClNeighbVtx ( f ` v ) ) ) ) } )
2 1 reldmmpo
 |-  Rel dom GraphLocIso