Metamath Proof Explorer


Theorem grlimdmrel

Description: The domain of the graph local isomorphism function is a relation. (Contributed by AV, 20-May-2025)

Ref Expression
Assertion grlimdmrel Rel dom GraphLocIso

Proof

Step Hyp Ref Expression
1 df-grlim GraphLocIso = ( 𝑔 ∈ V , ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( 𝑔 ISubGr ( 𝑔 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( ISubGr ( ClNeighbVtx ( 𝑓𝑣 ) ) ) ) } )
2 1 reldmmpo Rel dom GraphLocIso