Step |
Hyp |
Ref |
Expression |
0 |
|
cgrlim |
|- GraphLocIso |
1 |
|
vg |
|- g |
2 |
|
cvv |
|- _V |
3 |
|
vh |
|- h |
4 |
|
vf |
|- f |
5 |
4
|
cv |
|- f |
6 |
|
cvtx |
|- Vtx |
7 |
1
|
cv |
|- g |
8 |
7 6
|
cfv |
|- ( Vtx ` g ) |
9 |
3
|
cv |
|- h |
10 |
9 6
|
cfv |
|- ( Vtx ` h ) |
11 |
8 10 5
|
wf1o |
|- f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) |
12 |
|
vv |
|- v |
13 |
|
cisubgr |
|- ISubGr |
14 |
|
cclnbgr |
|- ClNeighbVtx |
15 |
12
|
cv |
|- v |
16 |
7 15 14
|
co |
|- ( g ClNeighbVtx v ) |
17 |
7 16 13
|
co |
|- ( g ISubGr ( g ClNeighbVtx v ) ) |
18 |
|
cgric |
|- ~=gr |
19 |
15 5
|
cfv |
|- ( f ` v ) |
20 |
9 19 14
|
co |
|- ( h ClNeighbVtx ( f ` v ) ) |
21 |
9 20 13
|
co |
|- ( h ISubGr ( h ClNeighbVtx ( f ` v ) ) ) |
22 |
17 21 18
|
wbr |
|- ( g ISubGr ( g ClNeighbVtx v ) ) ~=gr ( h ISubGr ( h ClNeighbVtx ( f ` v ) ) ) |
23 |
22 12 8
|
wral |
|- A. v e. ( Vtx ` g ) ( g ISubGr ( g ClNeighbVtx v ) ) ~=gr ( h ISubGr ( h ClNeighbVtx ( f ` v ) ) ) |
24 |
11 23
|
wa |
|- ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ A. v e. ( Vtx ` g ) ( g ISubGr ( g ClNeighbVtx v ) ) ~=gr ( h ISubGr ( h ClNeighbVtx ( f ` v ) ) ) ) |
25 |
24 4
|
cab |
|- { f | ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ A. v e. ( Vtx ` g ) ( g ISubGr ( g ClNeighbVtx v ) ) ~=gr ( h ISubGr ( h ClNeighbVtx ( f ` v ) ) ) ) } |
26 |
1 3 2 2 25
|
cmpo |
|- ( g e. _V , h e. _V |-> { f | ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ A. v e. ( Vtx ` g ) ( g ISubGr ( g ClNeighbVtx v ) ) ~=gr ( h ISubGr ( h ClNeighbVtx ( f ` v ) ) ) ) } ) |
27 |
0 26
|
wceq |
|- GraphLocIso = ( g e. _V , h e. _V |-> { f | ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ A. v e. ( Vtx ` g ) ( g ISubGr ( g ClNeighbVtx v ) ) ~=gr ( h ISubGr ( h ClNeighbVtx ( f ` v ) ) ) ) } ) |