Metamath Proof Explorer


Theorem grlimfn

Description: The graph local isomorphism function is a well-defined function. (Contributed by AV, 20-May-2025)

Ref Expression
Assertion grlimfn GraphLocIso Fn V × V

Proof

Step Hyp Ref Expression
1 df-grlim GraphLocIso = g V , h V f | f : Vtx g 1-1 onto Vtx h v Vtx g g ISubGr g ClNeighbVtx v 𝑔𝑟 h ISubGr h ClNeighbVtx f v
2 fvex Vtx h V
3 f1of f : Vtx g 1-1 onto Vtx h f : Vtx g Vtx h
4 3 ad2antrl Vtx h V f : Vtx g 1-1 onto Vtx h v Vtx g g ISubGr g ClNeighbVtx v 𝑔𝑟 h ISubGr h ClNeighbVtx f v f : Vtx g Vtx h
5 fvexd Vtx h V Vtx g V
6 id Vtx h V Vtx h V
7 4 5 6 fabexd Vtx h V f | f : Vtx g 1-1 onto Vtx h v Vtx g g ISubGr g ClNeighbVtx v 𝑔𝑟 h ISubGr h ClNeighbVtx f v V
8 2 7 ax-mp f | f : Vtx g 1-1 onto Vtx h v Vtx g g ISubGr g ClNeighbVtx v 𝑔𝑟 h ISubGr h ClNeighbVtx f v V
9 1 8 fnmpoi GraphLocIso Fn V × V