Metamath Proof Explorer


Theorem isgrlim

Description: A local isomorphism of graphs is a bijection between their vertices that preserves neighborhoods. (Contributed by AV, 20-May-2025)

Ref Expression
Hypotheses isgrlim.v V = Vtx G
isgrlim.w W = Vtx H
Assertion isgrlim G X H Y F Z F G GraphLocIso H F : V 1-1 onto W v V G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v

Proof

Step Hyp Ref Expression
1 isgrlim.v V = Vtx G
2 isgrlim.w W = Vtx H
3 df-grlim GraphLocIso = g V , h V f | f : Vtx g 1-1 onto Vtx h v Vtx g g ISubGr g ClNeighbVtx v 𝑔𝑟 h ISubGr h ClNeighbVtx f v
4 elex G X G V
5 4 3ad2ant1 G X H Y F Z G V
6 elex H Y H V
7 6 3ad2ant2 G X H Y F Z H V
8 f1of f : Vtx G 1-1 onto Vtx H f : Vtx G Vtx H
9 8 adantr f : Vtx G 1-1 onto Vtx H v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx f v f : Vtx G Vtx H
10 9 adantl G X H Y F Z f : Vtx G 1-1 onto Vtx H v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx f v f : Vtx G Vtx H
11 fvexd G X H Y F Z Vtx G V
12 fvexd G X H Y F Z Vtx H V
13 10 11 12 fabexd G X H Y F Z f | f : Vtx G 1-1 onto Vtx H v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx f v V
14 eqidd g = G h = H f = f
15 fveq2 g = G Vtx g = Vtx G
16 15 adantr g = G h = H Vtx g = Vtx G
17 fveq2 h = H Vtx h = Vtx H
18 17 adantl g = G h = H Vtx h = Vtx H
19 14 16 18 f1oeq123d g = G h = H f : Vtx g 1-1 onto Vtx h f : Vtx G 1-1 onto Vtx H
20 id g = G g = G
21 oveq1 g = G g ClNeighbVtx v = G ClNeighbVtx v
22 20 21 oveq12d g = G g ISubGr g ClNeighbVtx v = G ISubGr G ClNeighbVtx v
23 id h = H h = H
24 oveq1 h = H h ClNeighbVtx f v = H ClNeighbVtx f v
25 23 24 oveq12d h = H h ISubGr h ClNeighbVtx f v = H ISubGr H ClNeighbVtx f v
26 22 25 breqan12d g = G h = H g ISubGr g ClNeighbVtx v 𝑔𝑟 h ISubGr h ClNeighbVtx f v G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx f v
27 16 26 raleqbidv g = G h = H v Vtx g g ISubGr g ClNeighbVtx v 𝑔𝑟 h ISubGr h ClNeighbVtx f v v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx f v
28 19 27 anbi12d g = G h = H f : Vtx g 1-1 onto Vtx h v Vtx g g ISubGr g ClNeighbVtx v 𝑔𝑟 h ISubGr h ClNeighbVtx f v f : Vtx G 1-1 onto Vtx H v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx f v
29 28 abbidv g = G h = H f | f : Vtx g 1-1 onto Vtx h v Vtx g g ISubGr g ClNeighbVtx v 𝑔𝑟 h ISubGr h ClNeighbVtx f v = f | f : Vtx G 1-1 onto Vtx H v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx f v
30 3 5 7 13 29 elovmpod G X H Y F Z F G GraphLocIso H F f | f : Vtx G 1-1 onto Vtx H v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx f v
31 f1oeq1 f = F f : Vtx G 1-1 onto Vtx H F : Vtx G 1-1 onto Vtx H
32 fveq1 f = F f v = F v
33 32 oveq2d f = F H ClNeighbVtx f v = H ClNeighbVtx F v
34 33 oveq2d f = F H ISubGr H ClNeighbVtx f v = H ISubGr H ClNeighbVtx F v
35 34 breq2d f = F G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx f v G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v
36 35 ralbidv f = F v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx f v v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v
37 31 36 anbi12d f = F f : Vtx G 1-1 onto Vtx H v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx f v F : Vtx G 1-1 onto Vtx H v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v
38 37 elabg F Z F f | f : Vtx G 1-1 onto Vtx H v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx f v F : Vtx G 1-1 onto Vtx H v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v
39 38 3ad2ant3 G X H Y F Z F f | f : Vtx G 1-1 onto Vtx H v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx f v F : Vtx G 1-1 onto Vtx H v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v
40 f1oeq23 V = Vtx G W = Vtx H F : V 1-1 onto W F : Vtx G 1-1 onto Vtx H
41 1 2 40 mp2an F : V 1-1 onto W F : Vtx G 1-1 onto Vtx H
42 1 raleqi v V G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v
43 41 42 anbi12i F : V 1-1 onto W v V G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v F : Vtx G 1-1 onto Vtx H v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v
44 39 43 bitr4di G X H Y F Z F f | f : Vtx G 1-1 onto Vtx H v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx f v F : V 1-1 onto W v V G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v
45 30 44 bitrd G X H Y F Z F G GraphLocIso H F : V 1-1 onto W v V G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v