Metamath Proof Explorer


Theorem isgrlim2

Description: A local isomorphism of graphs is a bijection between their vertices that preserves neighborhoods. Definitions expanded. (Contributed by AV, 29-May-2025)

Ref Expression
Hypotheses isgrlim.v V = Vtx G
isgrlim.w W = Vtx H
isgrlim2.n N = G ClNeighbVtx v
isgrlim2.m M = H ClNeighbVtx F v
isgrlim2.i I = iEdg G
isgrlim2.j J = iEdg H
isgrlim2.k K = x dom I | I x N
isgrlim2.l L = x dom J | J x M
Assertion isgrlim2 G X H Y F Z F G GraphLocIso H F : V 1-1 onto W v V f f : N 1-1 onto M g g : K 1-1 onto L i K f I i = J g i

Proof

Step Hyp Ref Expression
1 isgrlim.v V = Vtx G
2 isgrlim.w W = Vtx H
3 isgrlim2.n N = G ClNeighbVtx v
4 isgrlim2.m M = H ClNeighbVtx F v
5 isgrlim2.i I = iEdg G
6 isgrlim2.j J = iEdg H
7 isgrlim2.k K = x dom I | I x N
8 isgrlim2.l L = x dom J | J x M
9 1 2 isgrlim G X H Y F Z F G GraphLocIso H F : V 1-1 onto W v V G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v
10 3 eqcomi G ClNeighbVtx v = N
11 10 oveq2i G ISubGr G ClNeighbVtx v = G ISubGr N
12 4 eqcomi H ClNeighbVtx F v = M
13 12 oveq2i H ISubGr H ClNeighbVtx F v = H ISubGr M
14 11 13 breq12i G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v G ISubGr N 𝑔𝑟 H ISubGr M
15 14 a1i G X H Y F Z G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v G ISubGr N 𝑔𝑟 H ISubGr M
16 5 6 3 4 7 8 clnbgrisubgrgrim G X H Y G ISubGr N 𝑔𝑟 H ISubGr M f f : N 1-1 onto M g g : K 1-1 onto L i K f I i = J g i
17 16 3adant3 G X H Y F Z G ISubGr N 𝑔𝑟 H ISubGr M f f : N 1-1 onto M g g : K 1-1 onto L i K f I i = J g i
18 15 17 bitrd G X H Y F Z G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v f f : N 1-1 onto M g g : K 1-1 onto L i K f I i = J g i
19 18 ralbidv G X H Y F Z v V G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v v V f f : N 1-1 onto M g g : K 1-1 onto L i K f I i = J g i
20 19 anbi2d G X H Y F Z F : V 1-1 onto W v V G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v F : V 1-1 onto W v V f f : N 1-1 onto M g g : K 1-1 onto L i K f I i = J g i
21 9 20 bitrd G X H Y F Z F G GraphLocIso H F : V 1-1 onto W v V f f : N 1-1 onto M g g : K 1-1 onto L i K f I i = J g i