Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Graph theory (extension)
Local isomorphisms of graphs
grlimprop
Next ⟩
grlimf1o
Metamath Proof Explorer
Ascii
Unicode
Theorem
grlimprop
Description:
Properties of a local isomorphism of graphs.
(Contributed by
AV
, 21-May-2025)
Ref
Expression
Hypotheses
grlimprop.v
⊢
V
=
Vtx
⁡
G
grlimprop.w
⊢
W
=
Vtx
⁡
H
Assertion
grlimprop
⊢
F
∈
G
GraphLocIso
H
→
F
:
V
⟶
1-1 onto
W
∧
∀
v
∈
V
G
ISubGr
G
ClNeighbVtx
v
≃
𝑔𝑟
H
ISubGr
H
ClNeighbVtx
F
⁡
v
Proof
Step
Hyp
Ref
Expression
1
grlimprop.v
⊢
V
=
Vtx
⁡
G
2
grlimprop.w
⊢
W
=
Vtx
⁡
H
3
grlimdmrel
⊢
Rel
⁡
dom
⁡
GraphLocIso
4
3
ovrcl
⊢
F
∈
G
GraphLocIso
H
→
G
∈
V
∧
H
∈
V
5
4
simpld
⊢
F
∈
G
GraphLocIso
H
→
G
∈
V
6
4
simprd
⊢
F
∈
G
GraphLocIso
H
→
H
∈
V
7
id
⊢
F
∈
G
GraphLocIso
H
→
F
∈
G
GraphLocIso
H
8
5
6
7
3jca
⊢
F
∈
G
GraphLocIso
H
→
G
∈
V
∧
H
∈
V
∧
F
∈
G
GraphLocIso
H
9
1
2
isgrlim
⊢
G
∈
V
∧
H
∈
V
∧
F
∈
G
GraphLocIso
H
→
F
∈
G
GraphLocIso
H
↔
F
:
V
⟶
1-1 onto
W
∧
∀
v
∈
V
G
ISubGr
G
ClNeighbVtx
v
≃
𝑔𝑟
H
ISubGr
H
ClNeighbVtx
F
⁡
v
10
9
biimpd
⊢
G
∈
V
∧
H
∈
V
∧
F
∈
G
GraphLocIso
H
→
F
∈
G
GraphLocIso
H
→
F
:
V
⟶
1-1 onto
W
∧
∀
v
∈
V
G
ISubGr
G
ClNeighbVtx
v
≃
𝑔𝑟
H
ISubGr
H
ClNeighbVtx
F
⁡
v
11
8
10
mpcom
⊢
F
∈
G
GraphLocIso
H
→
F
:
V
⟶
1-1 onto
W
∧
∀
v
∈
V
G
ISubGr
G
ClNeighbVtx
v
≃
𝑔𝑟
H
ISubGr
H
ClNeighbVtx
F
⁡
v