Metamath Proof Explorer


Theorem grlimprop

Description: Properties of a local isomorphism of graphs. (Contributed by AV, 21-May-2025)

Ref Expression
Hypotheses grlimprop.v V = Vtx G
grlimprop.w W = Vtx H
Assertion grlimprop F G GraphLocIso H F : V 1-1 onto W v V G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v

Proof

Step Hyp Ref Expression
1 grlimprop.v V = Vtx G
2 grlimprop.w W = Vtx H
3 grlimdmrel Rel dom GraphLocIso
4 3 ovrcl F G GraphLocIso H G V H V
5 4 simpld F G GraphLocIso H G V
6 4 simprd F G GraphLocIso H H V
7 id F G GraphLocIso H F G GraphLocIso H
8 5 6 7 3jca F G GraphLocIso H G V H V F G GraphLocIso H
9 1 2 isgrlim G V H V F G GraphLocIso H F G GraphLocIso H F : V 1-1 onto W v V G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v
10 9 biimpd G V H V F G GraphLocIso H F G GraphLocIso H F : V 1-1 onto W v V G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v
11 8 10 mpcom F G GraphLocIso H F : V 1-1 onto W v V G ISubGr G ClNeighbVtx v 𝑔𝑟 H ISubGr H ClNeighbVtx F v