Step |
Hyp |
Ref |
Expression |
1 |
|
grlimprop.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
grlimprop.w |
⊢ 𝑊 = ( Vtx ‘ 𝐻 ) |
3 |
|
grlimdmrel |
⊢ Rel dom GraphLocIso |
4 |
3
|
ovrcl |
⊢ ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) |
5 |
4
|
simpld |
⊢ ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) → 𝐺 ∈ V ) |
6 |
4
|
simprd |
⊢ ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) → 𝐻 ∈ V ) |
7 |
|
id |
⊢ ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) → 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) |
8 |
5 6 7
|
3jca |
⊢ ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) ) |
9 |
1 2
|
isgrlim |
⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ) ) ) |
10 |
9
|
biimpd |
⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ) ) ) |
11 |
8 10
|
mpcom |
⊢ ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ) ) |