Step |
Hyp |
Ref |
Expression |
1 |
|
grlimprop.v |
|- V = ( Vtx ` G ) |
2 |
|
grlimprop.w |
|- W = ( Vtx ` H ) |
3 |
|
grlimdmrel |
|- Rel dom GraphLocIso |
4 |
3
|
ovrcl |
|- ( F e. ( G GraphLocIso H ) -> ( G e. _V /\ H e. _V ) ) |
5 |
4
|
simpld |
|- ( F e. ( G GraphLocIso H ) -> G e. _V ) |
6 |
4
|
simprd |
|- ( F e. ( G GraphLocIso H ) -> H e. _V ) |
7 |
|
id |
|- ( F e. ( G GraphLocIso H ) -> F e. ( G GraphLocIso H ) ) |
8 |
5 6 7
|
3jca |
|- ( F e. ( G GraphLocIso H ) -> ( G e. _V /\ H e. _V /\ F e. ( G GraphLocIso H ) ) ) |
9 |
1 2
|
isgrlim |
|- ( ( G e. _V /\ H e. _V /\ F e. ( G GraphLocIso H ) ) -> ( F e. ( G GraphLocIso H ) <-> ( F : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) ) ) |
10 |
9
|
biimpd |
|- ( ( G e. _V /\ H e. _V /\ F e. ( G GraphLocIso H ) ) -> ( F e. ( G GraphLocIso H ) -> ( F : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) ) ) |
11 |
8 10
|
mpcom |
|- ( F e. ( G GraphLocIso H ) -> ( F : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) ) |