Description: A local isomorphism of graphs is a bijection between their vertices. (Contributed by AV, 21-May-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grlimprop.v | |- V = ( Vtx ` G ) |
|
grlimprop.w | |- W = ( Vtx ` H ) |
||
Assertion | grlimf1o | |- ( F e. ( G GraphLocIso H ) -> F : V -1-1-onto-> W ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grlimprop.v | |- V = ( Vtx ` G ) |
|
2 | grlimprop.w | |- W = ( Vtx ` H ) |
|
3 | 1 2 | grlimprop | |- ( F e. ( G GraphLocIso H ) -> ( F : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) ) |
4 | 3 | simpld | |- ( F e. ( G GraphLocIso H ) -> F : V -1-1-onto-> W ) |