Description: A local isomorphism of graphs is a bijection between their vertices. (Contributed by AV, 21-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grlimprop.v | |- V = ( Vtx ` G ) |
|
| grlimprop.w | |- W = ( Vtx ` H ) |
||
| Assertion | grlimf1o | |- ( F e. ( G GraphLocIso H ) -> F : V -1-1-onto-> W ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grlimprop.v | |- V = ( Vtx ` G ) |
|
| 2 | grlimprop.w | |- W = ( Vtx ` H ) |
|
| 3 | 1 2 | grlimprop | |- ( F e. ( G GraphLocIso H ) -> ( F : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) ) |
| 4 | 3 | simpld | |- ( F e. ( G GraphLocIso H ) -> F : V -1-1-onto-> W ) |