Step |
Hyp |
Ref |
Expression |
1 |
|
grlimprop.v |
|- V = ( Vtx ` G ) |
2 |
|
grlimprop.w |
|- W = ( Vtx ` H ) |
3 |
|
grlimprop2.n |
|- N = ( G ClNeighbVtx v ) |
4 |
|
grlimprop2.m |
|- M = ( H ClNeighbVtx ( F ` v ) ) |
5 |
|
grlimprop2.i |
|- I = ( iEdg ` G ) |
6 |
|
grlimprop2.j |
|- J = ( iEdg ` H ) |
7 |
|
grlimprop2.k |
|- K = { x e. dom I | ( I ` x ) C_ N } |
8 |
|
grlimprop2.l |
|- L = { x e. dom J | ( J ` x ) C_ M } |
9 |
|
grlimdmrel |
|- Rel dom GraphLocIso |
10 |
9
|
ovrcl |
|- ( F e. ( G GraphLocIso H ) -> ( G e. _V /\ H e. _V ) ) |
11 |
|
id |
|- ( F e. ( G GraphLocIso H ) -> F e. ( G GraphLocIso H ) ) |
12 |
|
df-3an |
|- ( ( G e. _V /\ H e. _V /\ F e. ( G GraphLocIso H ) ) <-> ( ( G e. _V /\ H e. _V ) /\ F e. ( G GraphLocIso H ) ) ) |
13 |
10 11 12
|
sylanbrc |
|- ( F e. ( G GraphLocIso H ) -> ( G e. _V /\ H e. _V /\ F e. ( G GraphLocIso H ) ) ) |
14 |
1 2 3 4 5 6 7 8
|
isgrlim2 |
|- ( ( G e. _V /\ H e. _V /\ F e. ( G GraphLocIso H ) ) -> ( F e. ( G GraphLocIso H ) <-> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) |
15 |
13 14
|
syl |
|- ( F e. ( G GraphLocIso H ) -> ( F e. ( G GraphLocIso H ) <-> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) |
16 |
15
|
ibi |
|- ( F e. ( G GraphLocIso H ) -> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |