Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
2 |
|
eqid |
|- ( Vtx ` H ) = ( Vtx ` H ) |
3 |
1 2
|
grimf1o |
|- ( F e. ( G GraphIso H ) -> F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) |
4 |
3
|
3ad2ant3 |
|- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) |
5 |
|
simpl1 |
|- ( ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) /\ v e. ( Vtx ` G ) ) -> G e. UHGraph ) |
6 |
|
simpl3 |
|- ( ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) /\ v e. ( Vtx ` G ) ) -> F e. ( G GraphIso H ) ) |
7 |
1
|
clnbgrssvtx |
|- ( G ClNeighbVtx v ) C_ ( Vtx ` G ) |
8 |
7
|
a1i |
|- ( ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) /\ v e. ( Vtx ` G ) ) -> ( G ClNeighbVtx v ) C_ ( Vtx ` G ) ) |
9 |
1
|
uhgrimisgrgric |
|- ( ( G e. UHGraph /\ F e. ( G GraphIso H ) /\ ( G ClNeighbVtx v ) C_ ( Vtx ` G ) ) -> ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( F " ( G ClNeighbVtx v ) ) ) ) |
10 |
5 6 8 9
|
syl3anc |
|- ( ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) /\ v e. ( Vtx ` G ) ) -> ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( F " ( G ClNeighbVtx v ) ) ) ) |
11 |
|
df-3an |
|- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) <-> ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) ) ) |
12 |
1
|
clnbgrgrim |
|- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) ) /\ v e. ( Vtx ` G ) ) -> ( H ClNeighbVtx ( F ` v ) ) = ( F " ( G ClNeighbVtx v ) ) ) |
13 |
11 12
|
sylanb |
|- ( ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) /\ v e. ( Vtx ` G ) ) -> ( H ClNeighbVtx ( F ` v ) ) = ( F " ( G ClNeighbVtx v ) ) ) |
14 |
13
|
oveq2d |
|- ( ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) /\ v e. ( Vtx ` G ) ) -> ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) = ( H ISubGr ( F " ( G ClNeighbVtx v ) ) ) ) |
15 |
10 14
|
breqtrrd |
|- ( ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) /\ v e. ( Vtx ` G ) ) -> ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) |
16 |
15
|
ralrimiva |
|- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) |
17 |
1 2
|
isgrlim |
|- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( F e. ( G GraphLocIso H ) <-> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) ) ) |
18 |
4 16 17
|
mpbir2and |
|- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> F e. ( G GraphLocIso H ) ) |