Step |
Hyp |
Ref |
Expression |
1 |
|
uspgrlimlem1.m |
|- M = ( H ClNeighbVtx X ) |
2 |
|
uspgrlimlem1.j |
|- J = ( Edg ` H ) |
3 |
|
uspgrlimlem1.l |
|- L = { x e. J | x C_ M } |
4 |
|
eqid |
|- ( iEdg ` H ) = ( iEdg ` H ) |
5 |
4
|
uspgrf1oedg |
|- ( H e. USPGraph -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) ) |
6 |
|
f1of |
|- ( ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) -> ( iEdg ` H ) : dom ( iEdg ` H ) --> ( Edg ` H ) ) |
7 |
5 6
|
syl |
|- ( H e. USPGraph -> ( iEdg ` H ) : dom ( iEdg ` H ) --> ( Edg ` H ) ) |
8 |
|
ssrab2 |
|- { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } C_ dom ( iEdg ` H ) |
9 |
|
fimarab |
|- ( ( ( iEdg ` H ) : dom ( iEdg ` H ) --> ( Edg ` H ) /\ { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } C_ dom ( iEdg ` H ) ) -> ( ( iEdg ` H ) " { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) = { y e. ( Edg ` H ) | E. z e. { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ( ( iEdg ` H ) ` z ) = y } ) |
10 |
7 8 9
|
sylancl |
|- ( H e. USPGraph -> ( ( iEdg ` H ) " { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) = { y e. ( Edg ` H ) | E. z e. { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ( ( iEdg ` H ) ` z ) = y } ) |
11 |
2
|
eqcomi |
|- ( Edg ` H ) = J |
12 |
11
|
a1i |
|- ( H e. USPGraph -> ( Edg ` H ) = J ) |
13 |
|
fveq2 |
|- ( x = z -> ( ( iEdg ` H ) ` x ) = ( ( iEdg ` H ) ` z ) ) |
14 |
13
|
sseq1d |
|- ( x = z -> ( ( ( iEdg ` H ) ` x ) C_ M <-> ( ( iEdg ` H ) ` z ) C_ M ) ) |
15 |
14
|
rexrab |
|- ( E. z e. { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ( ( iEdg ` H ) ` z ) = y <-> E. z e. dom ( iEdg ` H ) ( ( ( iEdg ` H ) ` z ) C_ M /\ ( ( iEdg ` H ) ` z ) = y ) ) |
16 |
|
sseq1 |
|- ( ( ( iEdg ` H ) ` z ) = y -> ( ( ( iEdg ` H ) ` z ) C_ M <-> y C_ M ) ) |
17 |
16
|
biimpac |
|- ( ( ( ( iEdg ` H ) ` z ) C_ M /\ ( ( iEdg ` H ) ` z ) = y ) -> y C_ M ) |
18 |
17
|
a1i |
|- ( ( ( H e. USPGraph /\ y e. ( Edg ` H ) ) /\ z e. dom ( iEdg ` H ) ) -> ( ( ( ( iEdg ` H ) ` z ) C_ M /\ ( ( iEdg ` H ) ` z ) = y ) -> y C_ M ) ) |
19 |
|
f1ocnv |
|- ( ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) -> `' ( iEdg ` H ) : ( Edg ` H ) -1-1-onto-> dom ( iEdg ` H ) ) |
20 |
|
f1of |
|- ( `' ( iEdg ` H ) : ( Edg ` H ) -1-1-onto-> dom ( iEdg ` H ) -> `' ( iEdg ` H ) : ( Edg ` H ) --> dom ( iEdg ` H ) ) |
21 |
5 19 20
|
3syl |
|- ( H e. USPGraph -> `' ( iEdg ` H ) : ( Edg ` H ) --> dom ( iEdg ` H ) ) |
22 |
21
|
ffvelcdmda |
|- ( ( H e. USPGraph /\ y e. ( Edg ` H ) ) -> ( `' ( iEdg ` H ) ` y ) e. dom ( iEdg ` H ) ) |
23 |
22
|
adantr |
|- ( ( ( H e. USPGraph /\ y e. ( Edg ` H ) ) /\ y C_ M ) -> ( `' ( iEdg ` H ) ` y ) e. dom ( iEdg ` H ) ) |
24 |
|
f1ocnvfv2 |
|- ( ( ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) /\ y e. ( Edg ` H ) ) -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y ) |
25 |
5 24
|
sylan |
|- ( ( H e. USPGraph /\ y e. ( Edg ` H ) ) -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y ) |
26 |
25
|
adantr |
|- ( ( ( H e. USPGraph /\ y e. ( Edg ` H ) ) /\ y C_ M ) -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y ) |
27 |
|
sseq1 |
|- ( y = ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) -> ( y C_ M <-> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M ) ) |
28 |
27
|
eqcoms |
|- ( ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y -> ( y C_ M <-> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M ) ) |
29 |
28
|
biimpcd |
|- ( y C_ M -> ( ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M ) ) |
30 |
29
|
adantl |
|- ( ( ( H e. USPGraph /\ y e. ( Edg ` H ) ) /\ y C_ M ) -> ( ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M ) ) |
31 |
30
|
ancrd |
|- ( ( ( H e. USPGraph /\ y e. ( Edg ` H ) ) /\ y C_ M ) -> ( ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y -> ( ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M /\ ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y ) ) ) |
32 |
26 31
|
mpd |
|- ( ( ( H e. USPGraph /\ y e. ( Edg ` H ) ) /\ y C_ M ) -> ( ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M /\ ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y ) ) |
33 |
|
fveq2 |
|- ( z = ( `' ( iEdg ` H ) ` y ) -> ( ( iEdg ` H ) ` z ) = ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) ) |
34 |
33
|
sseq1d |
|- ( z = ( `' ( iEdg ` H ) ` y ) -> ( ( ( iEdg ` H ) ` z ) C_ M <-> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M ) ) |
35 |
|
fveqeq2 |
|- ( z = ( `' ( iEdg ` H ) ` y ) -> ( ( ( iEdg ` H ) ` z ) = y <-> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y ) ) |
36 |
34 35
|
anbi12d |
|- ( z = ( `' ( iEdg ` H ) ` y ) -> ( ( ( ( iEdg ` H ) ` z ) C_ M /\ ( ( iEdg ` H ) ` z ) = y ) <-> ( ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M /\ ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y ) ) ) |
37 |
18 23 32 36
|
rspceb2dv |
|- ( ( H e. USPGraph /\ y e. ( Edg ` H ) ) -> ( E. z e. dom ( iEdg ` H ) ( ( ( iEdg ` H ) ` z ) C_ M /\ ( ( iEdg ` H ) ` z ) = y ) <-> y C_ M ) ) |
38 |
15 37
|
bitrid |
|- ( ( H e. USPGraph /\ y e. ( Edg ` H ) ) -> ( E. z e. { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ( ( iEdg ` H ) ` z ) = y <-> y C_ M ) ) |
39 |
12 38
|
rabeqbidva |
|- ( H e. USPGraph -> { y e. ( Edg ` H ) | E. z e. { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ( ( iEdg ` H ) ` z ) = y } = { y e. J | y C_ M } ) |
40 |
|
sseq1 |
|- ( y = x -> ( y C_ M <-> x C_ M ) ) |
41 |
40
|
cbvrabv |
|- { y e. J | y C_ M } = { x e. J | x C_ M } |
42 |
41
|
a1i |
|- ( H e. USPGraph -> { y e. J | y C_ M } = { x e. J | x C_ M } ) |
43 |
10 39 42
|
3eqtrrd |
|- ( H e. USPGraph -> { x e. J | x C_ M } = ( ( iEdg ` H ) " { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) ) |
44 |
3 43
|
eqtrid |
|- ( H e. USPGraph -> L = ( ( iEdg ` H ) " { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) ) |