Metamath Proof Explorer


Theorem uspgrlimlem1

Description: Lemma 1 for uspgrlim . (Contributed by AV, 16-Aug-2025)

Ref Expression
Hypotheses uspgrlimlem1.m 𝑀 = ( 𝐻 ClNeighbVtx 𝑋 )
uspgrlimlem1.j 𝐽 = ( Edg ‘ 𝐻 )
uspgrlimlem1.l 𝐿 = { 𝑥𝐽𝑥𝑀 }
Assertion uspgrlimlem1 ( 𝐻 ∈ USPGraph → 𝐿 = ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) )

Proof

Step Hyp Ref Expression
1 uspgrlimlem1.m 𝑀 = ( 𝐻 ClNeighbVtx 𝑋 )
2 uspgrlimlem1.j 𝐽 = ( Edg ‘ 𝐻 )
3 uspgrlimlem1.l 𝐿 = { 𝑥𝐽𝑥𝑀 }
4 eqid ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 )
5 4 uspgrf1oedg ( 𝐻 ∈ USPGraph → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) )
6 f1of ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ ( Edg ‘ 𝐻 ) )
7 5 6 syl ( 𝐻 ∈ USPGraph → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ ( Edg ‘ 𝐻 ) )
8 ssrab2 { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ⊆ dom ( iEdg ‘ 𝐻 )
9 fimarab ( ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ ( Edg ‘ 𝐻 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ⊆ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) = { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ ∃ 𝑧 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 } )
10 7 8 9 sylancl ( 𝐻 ∈ USPGraph → ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) = { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ ∃ 𝑧 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 } )
11 2 eqcomi ( Edg ‘ 𝐻 ) = 𝐽
12 11 a1i ( 𝐻 ∈ USPGraph → ( Edg ‘ 𝐻 ) = 𝐽 )
13 fveq2 ( 𝑥 = 𝑧 → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) )
14 13 sseq1d ( 𝑥 = 𝑧 → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀 ) )
15 14 rexrab ( ∃ 𝑧 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 ↔ ∃ 𝑧 ∈ dom ( iEdg ‘ 𝐻 ) ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 ) )
16 sseq1 ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀𝑦𝑀 ) )
17 16 biimpac ( ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 ) → 𝑦𝑀 )
18 17 a1i ( ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) ∧ 𝑧 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 ) → 𝑦𝑀 ) )
19 f1ocnv ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) → ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) )
20 f1of ( ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) ⟶ dom ( iEdg ‘ 𝐻 ) )
21 5 19 20 3syl ( 𝐻 ∈ USPGraph → ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) ⟶ dom ( iEdg ‘ 𝐻 ) )
22 21 ffvelcdmda ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐻 ) )
23 22 adantr ( ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) ∧ 𝑦𝑀 ) → ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐻 ) )
24 f1ocnvfv2 ( ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 )
25 5 24 sylan ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 )
26 25 adantr ( ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) ∧ 𝑦𝑀 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 )
27 sseq1 ( 𝑦 = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) → ( 𝑦𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) )
28 27 eqcoms ( ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 → ( 𝑦𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) )
29 28 biimpcd ( 𝑦𝑀 → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 → ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) )
30 29 adantl ( ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) ∧ 𝑦𝑀 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 → ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) )
31 30 ancrd ( ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) ∧ 𝑦𝑀 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 ) ) )
32 26 31 mpd ( ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) ∧ 𝑦𝑀 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 ) )
33 fveq2 ( 𝑧 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) → ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) )
34 33 sseq1d ( 𝑧 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) )
35 fveqeq2 ( 𝑧 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 ) )
36 34 35 anbi12d ( 𝑧 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) → ( ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 ) ↔ ( ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 ) ) )
37 18 23 32 36 rspceb2dv ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) → ( ∃ 𝑧 ∈ dom ( iEdg ‘ 𝐻 ) ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 ) ↔ 𝑦𝑀 ) )
38 15 37 bitrid ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) → ( ∃ 𝑧 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦𝑦𝑀 ) )
39 12 38 rabeqbidva ( 𝐻 ∈ USPGraph → { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ ∃ 𝑧 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 } = { 𝑦𝐽𝑦𝑀 } )
40 sseq1 ( 𝑦 = 𝑥 → ( 𝑦𝑀𝑥𝑀 ) )
41 40 cbvrabv { 𝑦𝐽𝑦𝑀 } = { 𝑥𝐽𝑥𝑀 }
42 41 a1i ( 𝐻 ∈ USPGraph → { 𝑦𝐽𝑦𝑀 } = { 𝑥𝐽𝑥𝑀 } )
43 10 39 42 3eqtrrd ( 𝐻 ∈ USPGraph → { 𝑥𝐽𝑥𝑀 } = ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) )
44 3 43 eqtrid ( 𝐻 ∈ USPGraph → 𝐿 = ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) )