| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uspgrlimlem1.m |
⊢ 𝑀 = ( 𝐻 ClNeighbVtx 𝑋 ) |
| 2 |
|
uspgrlimlem1.j |
⊢ 𝐽 = ( Edg ‘ 𝐻 ) |
| 3 |
|
uspgrlimlem1.l |
⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } |
| 4 |
|
eqid |
⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) |
| 5 |
4
|
uspgrf1oedg |
⊢ ( 𝐻 ∈ USPGraph → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 6 |
|
f1of |
⊢ ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ ( Edg ‘ 𝐻 ) ) |
| 7 |
5 6
|
syl |
⊢ ( 𝐻 ∈ USPGraph → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ ( Edg ‘ 𝐻 ) ) |
| 8 |
|
ssrab2 |
⊢ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ⊆ dom ( iEdg ‘ 𝐻 ) |
| 9 |
|
fimarab |
⊢ ( ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ ( Edg ‘ 𝐻 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ⊆ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) = { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ ∃ 𝑧 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 } ) |
| 10 |
7 8 9
|
sylancl |
⊢ ( 𝐻 ∈ USPGraph → ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) = { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ ∃ 𝑧 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 } ) |
| 11 |
2
|
eqcomi |
⊢ ( Edg ‘ 𝐻 ) = 𝐽 |
| 12 |
11
|
a1i |
⊢ ( 𝐻 ∈ USPGraph → ( Edg ‘ 𝐻 ) = 𝐽 ) |
| 13 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ) |
| 14 |
13
|
sseq1d |
⊢ ( 𝑥 = 𝑧 → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀 ) ) |
| 15 |
14
|
rexrab |
⊢ ( ∃ 𝑧 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 ↔ ∃ 𝑧 ∈ dom ( iEdg ‘ 𝐻 ) ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 ) ) |
| 16 |
|
sseq1 |
⊢ ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀 ↔ 𝑦 ⊆ 𝑀 ) ) |
| 17 |
16
|
biimpac |
⊢ ( ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 ) → 𝑦 ⊆ 𝑀 ) |
| 18 |
17
|
a1i |
⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) ∧ 𝑧 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 ) → 𝑦 ⊆ 𝑀 ) ) |
| 19 |
|
f1ocnv |
⊢ ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) → ◡ ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) |
| 20 |
|
f1of |
⊢ ( ◡ ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → ◡ ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) ⟶ dom ( iEdg ‘ 𝐻 ) ) |
| 21 |
5 19 20
|
3syl |
⊢ ( 𝐻 ∈ USPGraph → ◡ ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) ⟶ dom ( iEdg ‘ 𝐻 ) ) |
| 22 |
21
|
ffvelcdmda |
⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) → ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐻 ) ) |
| 23 |
22
|
adantr |
⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) ∧ 𝑦 ⊆ 𝑀 ) → ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐻 ) ) |
| 24 |
|
f1ocnvfv2 |
⊢ ( ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 ) |
| 25 |
5 24
|
sylan |
⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 ) |
| 26 |
25
|
adantr |
⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) ∧ 𝑦 ⊆ 𝑀 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 ) |
| 27 |
|
sseq1 |
⊢ ( 𝑦 = ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) → ( 𝑦 ⊆ 𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) ) |
| 28 |
27
|
eqcoms |
⊢ ( ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 → ( 𝑦 ⊆ 𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) ) |
| 29 |
28
|
biimpcd |
⊢ ( 𝑦 ⊆ 𝑀 → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) ) |
| 30 |
29
|
adantl |
⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) ∧ 𝑦 ⊆ 𝑀 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) ) |
| 31 |
30
|
ancrd |
⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) ∧ 𝑦 ⊆ 𝑀 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 ) ) ) |
| 32 |
26 31
|
mpd |
⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) ∧ 𝑦 ⊆ 𝑀 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 ) ) |
| 33 |
|
fveq2 |
⊢ ( 𝑧 = ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) → ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ) |
| 34 |
33
|
sseq1d |
⊢ ( 𝑧 = ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) ) |
| 35 |
|
fveqeq2 |
⊢ ( 𝑧 = ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 ) ) |
| 36 |
34 35
|
anbi12d |
⊢ ( 𝑧 = ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) → ( ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 ) ↔ ( ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 ) ) ) |
| 37 |
18 23 32 36
|
rspceb2dv |
⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) → ( ∃ 𝑧 ∈ dom ( iEdg ‘ 𝐻 ) ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 ) ↔ 𝑦 ⊆ 𝑀 ) ) |
| 38 |
15 37
|
bitrid |
⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) → ( ∃ 𝑧 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 ↔ 𝑦 ⊆ 𝑀 ) ) |
| 39 |
12 38
|
rabeqbidva |
⊢ ( 𝐻 ∈ USPGraph → { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ ∃ 𝑧 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 } = { 𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ 𝑀 } ) |
| 40 |
|
sseq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ⊆ 𝑀 ↔ 𝑥 ⊆ 𝑀 ) ) |
| 41 |
40
|
cbvrabv |
⊢ { 𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ 𝑀 } = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } |
| 42 |
41
|
a1i |
⊢ ( 𝐻 ∈ USPGraph → { 𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ 𝑀 } = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } ) |
| 43 |
10 39 42
|
3eqtrrd |
⊢ ( 𝐻 ∈ USPGraph → { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } = ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) ) |
| 44 |
3 43
|
eqtrid |
⊢ ( 𝐻 ∈ USPGraph → 𝐿 = ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) ) |