Description: Restricted existential specialization, using implicit substitution in both directions. (Contributed by Zhi Wang, 28-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspceb2dv.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝜓 → 𝜒 ) ) | |
| rspceb2dv.2 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝐴 ∈ 𝐵 ) | ||
| rspceb2dv.3 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) | ||
| rspceb2dv.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) | ||
| Assertion | rspceb2dv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 𝜓 ↔ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspceb2dv.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝜓 → 𝜒 ) ) | |
| 2 | rspceb2dv.2 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝐴 ∈ 𝐵 ) | |
| 3 | rspceb2dv.3 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) | |
| 4 | rspceb2dv.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) | |
| 5 | 1 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 𝜓 → 𝜒 ) ) |
| 6 | 4 | rspcev | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜃 ) → ∃ 𝑥 ∈ 𝐵 𝜓 ) |
| 7 | 2 3 6 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝜒 ) → ∃ 𝑥 ∈ 𝐵 𝜓 ) |
| 8 | 7 | ex | ⊢ ( 𝜑 → ( 𝜒 → ∃ 𝑥 ∈ 𝐵 𝜓 ) ) |
| 9 | 5 8 | impbid | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 𝜓 ↔ 𝜒 ) ) |