Step |
Hyp |
Ref |
Expression |
1 |
|
uspgrlimlem1.m |
⊢ 𝑀 = ( 𝐻 ClNeighbVtx 𝑋 ) |
2 |
|
uspgrlimlem1.j |
⊢ 𝐽 = ( Edg ‘ 𝐻 ) |
3 |
|
uspgrlimlem1.l |
⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } |
4 |
|
eqid |
⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) |
5 |
4
|
uspgrf1oedg |
⊢ ( 𝐻 ∈ USPGraph → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
6 |
|
f1ocnv |
⊢ ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) → ◡ ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) |
7 |
|
f1of |
⊢ ( ◡ ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → ◡ ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) ⟶ dom ( iEdg ‘ 𝐻 ) ) |
8 |
5 6 7
|
3syl |
⊢ ( 𝐻 ∈ USPGraph → ◡ ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) ⟶ dom ( iEdg ‘ 𝐻 ) ) |
9 |
2
|
rabeqi |
⊢ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } = { 𝑥 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑥 ⊆ 𝑀 } |
10 |
3 9
|
eqtri |
⊢ 𝐿 = { 𝑥 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑥 ⊆ 𝑀 } |
11 |
10
|
ssrab3 |
⊢ 𝐿 ⊆ ( Edg ‘ 𝐻 ) |
12 |
|
fimarab |
⊢ ( ( ◡ ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) ⟶ dom ( iEdg ‘ 𝐻 ) ∧ 𝐿 ⊆ ( Edg ‘ 𝐻 ) ) → ( ◡ ( iEdg ‘ 𝐻 ) “ 𝐿 ) = { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ∃ 𝑦 ∈ 𝐿 ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 } ) |
13 |
8 11 12
|
sylancl |
⊢ ( 𝐻 ∈ USPGraph → ( ◡ ( iEdg ‘ 𝐻 ) “ 𝐿 ) = { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ∃ 𝑦 ∈ 𝐿 ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 } ) |
14 |
|
sseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝑀 ↔ 𝑦 ⊆ 𝑀 ) ) |
15 |
14 3
|
elrab2 |
⊢ ( 𝑦 ∈ 𝐿 ↔ ( 𝑦 ∈ 𝐽 ∧ 𝑦 ⊆ 𝑀 ) ) |
16 |
2
|
eleq2i |
⊢ ( 𝑦 ∈ 𝐽 ↔ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) |
17 |
16
|
biimpi |
⊢ ( 𝑦 ∈ 𝐽 → 𝑦 ∈ ( Edg ‘ 𝐻 ) ) |
18 |
|
f1ocnvfv2 |
⊢ ( ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 ) |
19 |
5 17 18
|
syl2an |
⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ 𝐽 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 ) |
20 |
19
|
eqcomd |
⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ 𝐽 ) → 𝑦 = ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ) |
21 |
20
|
sseq1d |
⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ 𝐽 ) → ( 𝑦 ⊆ 𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) ) |
22 |
21
|
biimpd |
⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ 𝐽 ) → ( 𝑦 ⊆ 𝑀 → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) ) |
23 |
22
|
ex |
⊢ ( 𝐻 ∈ USPGraph → ( 𝑦 ∈ 𝐽 → ( 𝑦 ⊆ 𝑀 → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑦 ∈ 𝐽 → ( 𝑦 ⊆ 𝑀 → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) ) ) |
25 |
24
|
imp32 |
⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑦 ⊆ 𝑀 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) |
26 |
25
|
3adant3 |
⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑦 ⊆ 𝑀 ) ∧ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) |
27 |
|
fveq2 |
⊢ ( ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ) |
28 |
27
|
sseq1d |
⊢ ( ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) ) |
29 |
28
|
3ad2ant3 |
⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑦 ⊆ 𝑀 ) ∧ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) ) |
30 |
26 29
|
mpbid |
⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑦 ⊆ 𝑀 ) ∧ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 ) → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) |
31 |
30
|
3exp |
⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( 𝑦 ∈ 𝐽 ∧ 𝑦 ⊆ 𝑀 ) → ( ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) ) ) |
32 |
15 31
|
biimtrid |
⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑦 ∈ 𝐿 → ( ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) ) ) |
33 |
32
|
rexlimdv |
⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ∃ 𝑦 ∈ 𝐿 ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) ) |
34 |
|
fveqeq2 |
⊢ ( 𝑦 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) → ( ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 ↔ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ) = 𝑥 ) ) |
35 |
|
f1of |
⊢ ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ ( Edg ‘ 𝐻 ) ) |
36 |
|
eqid |
⊢ dom ( iEdg ‘ 𝐻 ) = dom ( iEdg ‘ 𝐻 ) |
37 |
2
|
eqcomi |
⊢ ( Edg ‘ 𝐻 ) = 𝐽 |
38 |
36 37
|
feq23i |
⊢ ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ ( Edg ‘ 𝐻 ) ↔ ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ 𝐽 ) |
39 |
38
|
biimpi |
⊢ ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ ( Edg ‘ 𝐻 ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ 𝐽 ) |
40 |
5 35 39
|
3syl |
⊢ ( 𝐻 ∈ USPGraph → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ 𝐽 ) |
41 |
40
|
ffvelcdmda |
⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐽 ) |
42 |
41
|
anim1i |
⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐽 ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) ) |
43 |
|
sseq1 |
⊢ ( 𝑦 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) → ( 𝑦 ⊆ 𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) ) |
44 |
14 43 3
|
elrab2w |
⊢ ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐿 ↔ ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐽 ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) ) |
45 |
42 44
|
sylibr |
⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐿 ) |
46 |
|
f1ocnvfv1 |
⊢ ( ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ) = 𝑥 ) |
47 |
5 46
|
sylan |
⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ) = 𝑥 ) |
48 |
47
|
adantr |
⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) → ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ) = 𝑥 ) |
49 |
34 45 48
|
rspcedvdw |
⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) → ∃ 𝑦 ∈ 𝐿 ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 ) |
50 |
49
|
ex |
⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 → ∃ 𝑦 ∈ 𝐿 ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 ) ) |
51 |
33 50
|
impbid |
⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ∃ 𝑦 ∈ 𝐿 ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 ↔ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) ) |
52 |
51
|
rabbidva |
⊢ ( 𝐻 ∈ USPGraph → { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ∃ 𝑦 ∈ 𝐿 ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 } = { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) |
53 |
13 52
|
eqtrd |
⊢ ( 𝐻 ∈ USPGraph → ( ◡ ( iEdg ‘ 𝐻 ) “ 𝐿 ) = { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) |