Metamath Proof Explorer


Theorem uspgrlimlem2

Description: Lemma 2 for uspgrlim . (Contributed by AV, 16-Aug-2025)

Ref Expression
Hypotheses uspgrlimlem1.m 𝑀 = ( 𝐻 ClNeighbVtx 𝑋 )
uspgrlimlem1.j 𝐽 = ( Edg ‘ 𝐻 )
uspgrlimlem1.l 𝐿 = { 𝑥𝐽𝑥𝑀 }
Assertion uspgrlimlem2 ( 𝐻 ∈ USPGraph → ( ( iEdg ‘ 𝐻 ) “ 𝐿 ) = { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } )

Proof

Step Hyp Ref Expression
1 uspgrlimlem1.m 𝑀 = ( 𝐻 ClNeighbVtx 𝑋 )
2 uspgrlimlem1.j 𝐽 = ( Edg ‘ 𝐻 )
3 uspgrlimlem1.l 𝐿 = { 𝑥𝐽𝑥𝑀 }
4 eqid ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 )
5 4 uspgrf1oedg ( 𝐻 ∈ USPGraph → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) )
6 f1ocnv ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) → ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) )
7 f1of ( ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) ⟶ dom ( iEdg ‘ 𝐻 ) )
8 5 6 7 3syl ( 𝐻 ∈ USPGraph → ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) ⟶ dom ( iEdg ‘ 𝐻 ) )
9 2 rabeqi { 𝑥𝐽𝑥𝑀 } = { 𝑥 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑥𝑀 }
10 3 9 eqtri 𝐿 = { 𝑥 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑥𝑀 }
11 10 ssrab3 𝐿 ⊆ ( Edg ‘ 𝐻 )
12 fimarab ( ( ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) ⟶ dom ( iEdg ‘ 𝐻 ) ∧ 𝐿 ⊆ ( Edg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) “ 𝐿 ) = { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ∃ 𝑦𝐿 ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 } )
13 8 11 12 sylancl ( 𝐻 ∈ USPGraph → ( ( iEdg ‘ 𝐻 ) “ 𝐿 ) = { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ∃ 𝑦𝐿 ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 } )
14 sseq1 ( 𝑥 = 𝑦 → ( 𝑥𝑀𝑦𝑀 ) )
15 14 3 elrab2 ( 𝑦𝐿 ↔ ( 𝑦𝐽𝑦𝑀 ) )
16 2 eleq2i ( 𝑦𝐽𝑦 ∈ ( Edg ‘ 𝐻 ) )
17 16 biimpi ( 𝑦𝐽𝑦 ∈ ( Edg ‘ 𝐻 ) )
18 f1ocnvfv2 ( ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 )
19 5 17 18 syl2an ( ( 𝐻 ∈ USPGraph ∧ 𝑦𝐽 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 )
20 19 eqcomd ( ( 𝐻 ∈ USPGraph ∧ 𝑦𝐽 ) → 𝑦 = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) )
21 20 sseq1d ( ( 𝐻 ∈ USPGraph ∧ 𝑦𝐽 ) → ( 𝑦𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) )
22 21 biimpd ( ( 𝐻 ∈ USPGraph ∧ 𝑦𝐽 ) → ( 𝑦𝑀 → ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) )
23 22 ex ( 𝐻 ∈ USPGraph → ( 𝑦𝐽 → ( 𝑦𝑀 → ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) ) )
24 23 adantr ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑦𝐽 → ( 𝑦𝑀 → ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) ) )
25 24 imp32 ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑦𝐽𝑦𝑀 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 )
26 25 3adant3 ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑦𝐽𝑦𝑀 ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 )
27 fveq2 ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) )
28 27 sseq1d ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) )
29 28 3ad2ant3 ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑦𝐽𝑦𝑀 ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) )
30 26 29 mpbid ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑦𝐽𝑦𝑀 ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 ) → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 )
31 30 3exp ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( 𝑦𝐽𝑦𝑀 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) ) )
32 15 31 biimtrid ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑦𝐿 → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) ) )
33 32 rexlimdv ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ∃ 𝑦𝐿 ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) )
34 fveqeq2 ( 𝑦 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ) = 𝑥 ) )
35 f1of ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ ( Edg ‘ 𝐻 ) )
36 eqid dom ( iEdg ‘ 𝐻 ) = dom ( iEdg ‘ 𝐻 )
37 2 eqcomi ( Edg ‘ 𝐻 ) = 𝐽
38 36 37 feq23i ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ ( Edg ‘ 𝐻 ) ↔ ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ 𝐽 )
39 38 biimpi ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ ( Edg ‘ 𝐻 ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ 𝐽 )
40 5 35 39 3syl ( 𝐻 ∈ USPGraph → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ 𝐽 )
41 40 ffvelcdmda ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐽 )
42 41 anim1i ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐽 ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) )
43 sseq1 ( 𝑦 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) → ( 𝑦𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) )
44 14 43 3 elrab2w ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐿 ↔ ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐽 ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) )
45 42 44 sylibr ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐿 )
46 f1ocnvfv1 ( ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ) = 𝑥 )
47 5 46 sylan ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ) = 𝑥 )
48 47 adantr ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ) = 𝑥 )
49 34 45 48 rspcedvdw ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) → ∃ 𝑦𝐿 ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 )
50 49 ex ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 → ∃ 𝑦𝐿 ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 ) )
51 33 50 impbid ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ∃ 𝑦𝐿 ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 ↔ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) )
52 51 rabbidva ( 𝐻 ∈ USPGraph → { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ∃ 𝑦𝐿 ( ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 } = { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } )
53 13 52 eqtrd ( 𝐻 ∈ USPGraph → ( ( iEdg ‘ 𝐻 ) “ 𝐿 ) = { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } )