| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uspgrlimlem1.m |
|- M = ( H ClNeighbVtx X ) |
| 2 |
|
uspgrlimlem1.j |
|- J = ( Edg ` H ) |
| 3 |
|
uspgrlimlem1.l |
|- L = { x e. J | x C_ M } |
| 4 |
|
eqid |
|- ( iEdg ` H ) = ( iEdg ` H ) |
| 5 |
4
|
uspgrf1oedg |
|- ( H e. USPGraph -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) ) |
| 6 |
|
f1ocnv |
|- ( ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) -> `' ( iEdg ` H ) : ( Edg ` H ) -1-1-onto-> dom ( iEdg ` H ) ) |
| 7 |
|
f1of |
|- ( `' ( iEdg ` H ) : ( Edg ` H ) -1-1-onto-> dom ( iEdg ` H ) -> `' ( iEdg ` H ) : ( Edg ` H ) --> dom ( iEdg ` H ) ) |
| 8 |
5 6 7
|
3syl |
|- ( H e. USPGraph -> `' ( iEdg ` H ) : ( Edg ` H ) --> dom ( iEdg ` H ) ) |
| 9 |
2
|
rabeqi |
|- { x e. J | x C_ M } = { x e. ( Edg ` H ) | x C_ M } |
| 10 |
3 9
|
eqtri |
|- L = { x e. ( Edg ` H ) | x C_ M } |
| 11 |
10
|
ssrab3 |
|- L C_ ( Edg ` H ) |
| 12 |
|
fimarab |
|- ( ( `' ( iEdg ` H ) : ( Edg ` H ) --> dom ( iEdg ` H ) /\ L C_ ( Edg ` H ) ) -> ( `' ( iEdg ` H ) " L ) = { x e. dom ( iEdg ` H ) | E. y e. L ( `' ( iEdg ` H ) ` y ) = x } ) |
| 13 |
8 11 12
|
sylancl |
|- ( H e. USPGraph -> ( `' ( iEdg ` H ) " L ) = { x e. dom ( iEdg ` H ) | E. y e. L ( `' ( iEdg ` H ) ` y ) = x } ) |
| 14 |
|
sseq1 |
|- ( x = y -> ( x C_ M <-> y C_ M ) ) |
| 15 |
14 3
|
elrab2 |
|- ( y e. L <-> ( y e. J /\ y C_ M ) ) |
| 16 |
2
|
eleq2i |
|- ( y e. J <-> y e. ( Edg ` H ) ) |
| 17 |
16
|
biimpi |
|- ( y e. J -> y e. ( Edg ` H ) ) |
| 18 |
|
f1ocnvfv2 |
|- ( ( ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) /\ y e. ( Edg ` H ) ) -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y ) |
| 19 |
5 17 18
|
syl2an |
|- ( ( H e. USPGraph /\ y e. J ) -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y ) |
| 20 |
19
|
eqcomd |
|- ( ( H e. USPGraph /\ y e. J ) -> y = ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) ) |
| 21 |
20
|
sseq1d |
|- ( ( H e. USPGraph /\ y e. J ) -> ( y C_ M <-> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M ) ) |
| 22 |
21
|
biimpd |
|- ( ( H e. USPGraph /\ y e. J ) -> ( y C_ M -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M ) ) |
| 23 |
22
|
ex |
|- ( H e. USPGraph -> ( y e. J -> ( y C_ M -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M ) ) ) |
| 24 |
23
|
adantr |
|- ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) -> ( y e. J -> ( y C_ M -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M ) ) ) |
| 25 |
24
|
imp32 |
|- ( ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) /\ ( y e. J /\ y C_ M ) ) -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M ) |
| 26 |
25
|
3adant3 |
|- ( ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) /\ ( y e. J /\ y C_ M ) /\ ( `' ( iEdg ` H ) ` y ) = x ) -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M ) |
| 27 |
|
fveq2 |
|- ( ( `' ( iEdg ` H ) ` y ) = x -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = ( ( iEdg ` H ) ` x ) ) |
| 28 |
27
|
sseq1d |
|- ( ( `' ( iEdg ` H ) ` y ) = x -> ( ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M <-> ( ( iEdg ` H ) ` x ) C_ M ) ) |
| 29 |
28
|
3ad2ant3 |
|- ( ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) /\ ( y e. J /\ y C_ M ) /\ ( `' ( iEdg ` H ) ` y ) = x ) -> ( ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M <-> ( ( iEdg ` H ) ` x ) C_ M ) ) |
| 30 |
26 29
|
mpbid |
|- ( ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) /\ ( y e. J /\ y C_ M ) /\ ( `' ( iEdg ` H ) ` y ) = x ) -> ( ( iEdg ` H ) ` x ) C_ M ) |
| 31 |
30
|
3exp |
|- ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) -> ( ( y e. J /\ y C_ M ) -> ( ( `' ( iEdg ` H ) ` y ) = x -> ( ( iEdg ` H ) ` x ) C_ M ) ) ) |
| 32 |
15 31
|
biimtrid |
|- ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) -> ( y e. L -> ( ( `' ( iEdg ` H ) ` y ) = x -> ( ( iEdg ` H ) ` x ) C_ M ) ) ) |
| 33 |
32
|
rexlimdv |
|- ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) -> ( E. y e. L ( `' ( iEdg ` H ) ` y ) = x -> ( ( iEdg ` H ) ` x ) C_ M ) ) |
| 34 |
|
fveqeq2 |
|- ( y = ( ( iEdg ` H ) ` x ) -> ( ( `' ( iEdg ` H ) ` y ) = x <-> ( `' ( iEdg ` H ) ` ( ( iEdg ` H ) ` x ) ) = x ) ) |
| 35 |
|
f1of |
|- ( ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) -> ( iEdg ` H ) : dom ( iEdg ` H ) --> ( Edg ` H ) ) |
| 36 |
|
eqid |
|- dom ( iEdg ` H ) = dom ( iEdg ` H ) |
| 37 |
2
|
eqcomi |
|- ( Edg ` H ) = J |
| 38 |
36 37
|
feq23i |
|- ( ( iEdg ` H ) : dom ( iEdg ` H ) --> ( Edg ` H ) <-> ( iEdg ` H ) : dom ( iEdg ` H ) --> J ) |
| 39 |
38
|
biimpi |
|- ( ( iEdg ` H ) : dom ( iEdg ` H ) --> ( Edg ` H ) -> ( iEdg ` H ) : dom ( iEdg ` H ) --> J ) |
| 40 |
5 35 39
|
3syl |
|- ( H e. USPGraph -> ( iEdg ` H ) : dom ( iEdg ` H ) --> J ) |
| 41 |
40
|
ffvelcdmda |
|- ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) -> ( ( iEdg ` H ) ` x ) e. J ) |
| 42 |
41
|
anim1i |
|- ( ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) /\ ( ( iEdg ` H ) ` x ) C_ M ) -> ( ( ( iEdg ` H ) ` x ) e. J /\ ( ( iEdg ` H ) ` x ) C_ M ) ) |
| 43 |
|
sseq1 |
|- ( y = ( ( iEdg ` H ) ` x ) -> ( y C_ M <-> ( ( iEdg ` H ) ` x ) C_ M ) ) |
| 44 |
14 43 3
|
elrab2w |
|- ( ( ( iEdg ` H ) ` x ) e. L <-> ( ( ( iEdg ` H ) ` x ) e. J /\ ( ( iEdg ` H ) ` x ) C_ M ) ) |
| 45 |
42 44
|
sylibr |
|- ( ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) /\ ( ( iEdg ` H ) ` x ) C_ M ) -> ( ( iEdg ` H ) ` x ) e. L ) |
| 46 |
|
f1ocnvfv1 |
|- ( ( ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) /\ x e. dom ( iEdg ` H ) ) -> ( `' ( iEdg ` H ) ` ( ( iEdg ` H ) ` x ) ) = x ) |
| 47 |
5 46
|
sylan |
|- ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) -> ( `' ( iEdg ` H ) ` ( ( iEdg ` H ) ` x ) ) = x ) |
| 48 |
47
|
adantr |
|- ( ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) /\ ( ( iEdg ` H ) ` x ) C_ M ) -> ( `' ( iEdg ` H ) ` ( ( iEdg ` H ) ` x ) ) = x ) |
| 49 |
34 45 48
|
rspcedvdw |
|- ( ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) /\ ( ( iEdg ` H ) ` x ) C_ M ) -> E. y e. L ( `' ( iEdg ` H ) ` y ) = x ) |
| 50 |
49
|
ex |
|- ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) -> ( ( ( iEdg ` H ) ` x ) C_ M -> E. y e. L ( `' ( iEdg ` H ) ` y ) = x ) ) |
| 51 |
33 50
|
impbid |
|- ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) -> ( E. y e. L ( `' ( iEdg ` H ) ` y ) = x <-> ( ( iEdg ` H ) ` x ) C_ M ) ) |
| 52 |
51
|
rabbidva |
|- ( H e. USPGraph -> { x e. dom ( iEdg ` H ) | E. y e. L ( `' ( iEdg ` H ) ` y ) = x } = { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) |
| 53 |
13 52
|
eqtrd |
|- ( H e. USPGraph -> ( `' ( iEdg ` H ) " L ) = { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) |