| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfv |
|- F/ y ( F : A --> B /\ X C_ A ) |
| 2 |
|
nfcv |
|- F/_ y ( F " X ) |
| 3 |
|
nfrab1 |
|- F/_ y { y e. B | E. x e. X ( F ` x ) = y } |
| 4 |
|
ffn |
|- ( F : A --> B -> F Fn A ) |
| 5 |
|
fvelimab |
|- ( ( F Fn A /\ X C_ A ) -> ( y e. ( F " X ) <-> E. x e. X ( F ` x ) = y ) ) |
| 6 |
5
|
anbi2d |
|- ( ( F Fn A /\ X C_ A ) -> ( ( y e. B /\ y e. ( F " X ) ) <-> ( y e. B /\ E. x e. X ( F ` x ) = y ) ) ) |
| 7 |
4 6
|
sylan |
|- ( ( F : A --> B /\ X C_ A ) -> ( ( y e. B /\ y e. ( F " X ) ) <-> ( y e. B /\ E. x e. X ( F ` x ) = y ) ) ) |
| 8 |
|
fimass |
|- ( F : A --> B -> ( F " X ) C_ B ) |
| 9 |
8
|
adantr |
|- ( ( F : A --> B /\ X C_ A ) -> ( F " X ) C_ B ) |
| 10 |
9
|
sseld |
|- ( ( F : A --> B /\ X C_ A ) -> ( y e. ( F " X ) -> y e. B ) ) |
| 11 |
10
|
pm4.71rd |
|- ( ( F : A --> B /\ X C_ A ) -> ( y e. ( F " X ) <-> ( y e. B /\ y e. ( F " X ) ) ) ) |
| 12 |
|
rabid |
|- ( y e. { y e. B | E. x e. X ( F ` x ) = y } <-> ( y e. B /\ E. x e. X ( F ` x ) = y ) ) |
| 13 |
12
|
a1i |
|- ( ( F : A --> B /\ X C_ A ) -> ( y e. { y e. B | E. x e. X ( F ` x ) = y } <-> ( y e. B /\ E. x e. X ( F ` x ) = y ) ) ) |
| 14 |
7 11 13
|
3bitr4d |
|- ( ( F : A --> B /\ X C_ A ) -> ( y e. ( F " X ) <-> y e. { y e. B | E. x e. X ( F ` x ) = y } ) ) |
| 15 |
1 2 3 14
|
eqrd |
|- ( ( F : A --> B /\ X C_ A ) -> ( F " X ) = { y e. B | E. x e. X ( F ` x ) = y } ) |