Metamath Proof Explorer


Theorem fimarab

Description: Expressing the image of a set as a restricted abstract builder. (Contributed by Thierry Arnoux, 27-Jan-2020)

Ref Expression
Assertion fimarab F:ABXAFX=yB|xXFx=y

Proof

Step Hyp Ref Expression
1 nfv yF:ABXA
2 nfcv _yFX
3 nfrab1 _yyB|xXFx=y
4 ffn F:ABFFnA
5 fvelimab FFnAXAyFXxXFx=y
6 5 anbi2d FFnAXAyByFXyBxXFx=y
7 4 6 sylan F:ABXAyByFXyBxXFx=y
8 fimass F:ABFXB
9 8 adantr F:ABXAFXB
10 9 sseld F:ABXAyFXyB
11 10 pm4.71rd F:ABXAyFXyByFX
12 rabid yyB|xXFx=yyBxXFx=y
13 12 a1i F:ABXAyyB|xXFx=yyBxXFx=y
14 7 11 13 3bitr4d F:ABXAyFXyyB|xXFx=y
15 1 2 3 14 eqrd F:ABXAFX=yB|xXFx=y