Metamath Proof Explorer


Theorem unipreima

Description: Preimage of a class union. (Contributed by Thierry Arnoux, 7-Feb-2017)

Ref Expression
Assertion unipreima FunFF-1A=xAF-1x

Proof

Step Hyp Ref Expression
1 funfn FunFFFndomF
2 r19.42v xAydomFFyxydomFxAFyx
3 2 bicomi ydomFxAFyxxAydomFFyx
4 3 a1i FFndomFydomFxAFyxxAydomFFyx
5 eluni2 FyAxAFyx
6 5 anbi2i ydomFFyAydomFxAFyx
7 6 a1i FFndomFydomFFyAydomFxAFyx
8 elpreima FFndomFyF-1xydomFFyx
9 8 rexbidv FFndomFxAyF-1xxAydomFFyx
10 4 7 9 3bitr4d FFndomFydomFFyAxAyF-1x
11 elpreima FFndomFyF-1AydomFFyA
12 eliun yxAF-1xxAyF-1x
13 12 a1i FFndomFyxAF-1xxAyF-1x
14 10 11 13 3bitr4d FFndomFyF-1AyxAF-1x
15 14 eqrdv FFndomFF-1A=xAF-1x
16 1 15 sylbi FunFF-1A=xAF-1x