| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uspgrlimlem1.m |
|
| 2 |
|
uspgrlimlem1.j |
|
| 3 |
|
uspgrlimlem1.l |
|
| 4 |
|
eqid |
|
| 5 |
4
|
uspgrf1oedg |
|
| 6 |
|
f1ocnv |
|
| 7 |
|
f1of |
|
| 8 |
5 6 7
|
3syl |
|
| 9 |
2
|
rabeqi |
|
| 10 |
3 9
|
eqtri |
|
| 11 |
10
|
ssrab3 |
|
| 12 |
|
fimarab |
|
| 13 |
8 11 12
|
sylancl |
|
| 14 |
|
sseq1 |
|
| 15 |
14 3
|
elrab2 |
|
| 16 |
2
|
eleq2i |
|
| 17 |
16
|
biimpi |
|
| 18 |
|
f1ocnvfv2 |
|
| 19 |
5 17 18
|
syl2an |
|
| 20 |
19
|
eqcomd |
|
| 21 |
20
|
sseq1d |
|
| 22 |
21
|
biimpd |
|
| 23 |
22
|
ex |
|
| 24 |
23
|
adantr |
|
| 25 |
24
|
imp32 |
|
| 26 |
25
|
3adant3 |
|
| 27 |
|
fveq2 |
|
| 28 |
27
|
sseq1d |
|
| 29 |
28
|
3ad2ant3 |
|
| 30 |
26 29
|
mpbid |
|
| 31 |
30
|
3exp |
|
| 32 |
15 31
|
biimtrid |
|
| 33 |
32
|
rexlimdv |
|
| 34 |
|
fveqeq2 |
|
| 35 |
|
f1of |
|
| 36 |
|
eqid |
|
| 37 |
2
|
eqcomi |
|
| 38 |
36 37
|
feq23i |
|
| 39 |
38
|
biimpi |
|
| 40 |
5 35 39
|
3syl |
|
| 41 |
40
|
ffvelcdmda |
|
| 42 |
41
|
anim1i |
|
| 43 |
|
sseq1 |
|
| 44 |
14 43 3
|
elrab2w |
|
| 45 |
42 44
|
sylibr |
|
| 46 |
|
f1ocnvfv1 |
|
| 47 |
5 46
|
sylan |
|
| 48 |
47
|
adantr |
|
| 49 |
34 45 48
|
rspcedvdw |
|
| 50 |
49
|
ex |
|
| 51 |
33 50
|
impbid |
|
| 52 |
51
|
rabbidva |
|
| 53 |
13 52
|
eqtrd |
|