Step |
Hyp |
Ref |
Expression |
1 |
|
uspgrlimlem1.m |
|
2 |
|
uspgrlimlem1.j |
|
3 |
|
uspgrlimlem1.l |
|
4 |
|
eqid |
|
5 |
4
|
uspgrf1oedg |
|
6 |
|
f1ocnv |
|
7 |
|
f1of |
|
8 |
5 6 7
|
3syl |
|
9 |
2
|
rabeqi |
|
10 |
3 9
|
eqtri |
|
11 |
10
|
ssrab3 |
|
12 |
|
fimarab |
|
13 |
8 11 12
|
sylancl |
|
14 |
|
sseq1 |
|
15 |
14 3
|
elrab2 |
|
16 |
2
|
eleq2i |
|
17 |
16
|
biimpi |
|
18 |
|
f1ocnvfv2 |
|
19 |
5 17 18
|
syl2an |
|
20 |
19
|
eqcomd |
|
21 |
20
|
sseq1d |
|
22 |
21
|
biimpd |
|
23 |
22
|
ex |
|
24 |
23
|
adantr |
|
25 |
24
|
imp32 |
|
26 |
25
|
3adant3 |
|
27 |
|
fveq2 |
|
28 |
27
|
sseq1d |
|
29 |
28
|
3ad2ant3 |
|
30 |
26 29
|
mpbid |
|
31 |
30
|
3exp |
|
32 |
15 31
|
biimtrid |
|
33 |
32
|
rexlimdv |
|
34 |
|
fveqeq2 |
|
35 |
|
f1of |
|
36 |
|
eqid |
|
37 |
2
|
eqcomi |
|
38 |
36 37
|
feq23i |
|
39 |
38
|
biimpi |
|
40 |
5 35 39
|
3syl |
|
41 |
40
|
ffvelcdmda |
|
42 |
41
|
anim1i |
|
43 |
|
sseq1 |
|
44 |
14 43 3
|
elrab2w |
|
45 |
42 44
|
sylibr |
|
46 |
|
f1ocnvfv1 |
|
47 |
5 46
|
sylan |
|
48 |
47
|
adantr |
|
49 |
34 45 48
|
rspcedvdw |
|
50 |
49
|
ex |
|
51 |
33 50
|
impbid |
|
52 |
51
|
rabbidva |
|
53 |
13 52
|
eqtrd |
|