Step |
Hyp |
Ref |
Expression |
1 |
|
uspgrlim.v |
|
2 |
|
uspgrlim.w |
|
3 |
|
uspgrlim.n |
|
4 |
|
uspgrlim.m |
|
5 |
|
uspgrlim.i |
|
6 |
|
uspgrlim.j |
|
7 |
|
uspgrlim.k |
|
8 |
|
uspgrlim.l |
|
9 |
|
sseq1 |
|
10 |
9 7
|
elrab2 |
|
11 |
|
eqid |
|
12 |
11
|
uspgrf1oedg |
|
13 |
|
f1ocnv |
|
14 |
|
f1of |
|
15 |
12 13 14
|
3syl |
|
16 |
15
|
3ad2ant1 |
|
17 |
5
|
eleq2i |
|
18 |
17
|
biimpi |
|
19 |
18
|
adantr |
|
20 |
|
fvco3 |
|
21 |
16 19 20
|
syl2an |
|
22 |
|
f1ocnvdm |
|
23 |
12 19 22
|
syl2an |
|
24 |
|
f1ocnvfv2 |
|
25 |
12 19 24
|
syl2an |
|
26 |
|
simprr |
|
27 |
25 26
|
eqsstrd |
|
28 |
23 27
|
jca |
|
29 |
28
|
adantlr |
|
30 |
|
fveq2 |
|
31 |
30
|
sseq1d |
|
32 |
31
|
elrab |
|
33 |
29 32
|
sylibr |
|
34 |
|
fveq2 |
|
35 |
34
|
imaeq2d |
|
36 |
|
2fveq3 |
|
37 |
35 36
|
eqeq12d |
|
38 |
37
|
rspcv |
|
39 |
33 38
|
syl |
|
40 |
|
eqcom |
|
41 |
|
f1of |
|
42 |
41
|
ad2antlr |
|
43 |
42 33
|
fvco3d |
|
44 |
43
|
eqcomd |
|
45 |
12
|
adantr |
|
46 |
45 19 24
|
syl2an |
|
47 |
46
|
imaeq2d |
|
48 |
44 47
|
eqeq12d |
|
49 |
48
|
biimpd |
|
50 |
40 49
|
biimtrid |
|
51 |
39 50
|
syld |
|
52 |
51
|
ex |
|
53 |
52
|
com23 |
|
54 |
53
|
ex |
|
55 |
54
|
3imp1 |
|
56 |
21 55
|
eqtr2d |
|
57 |
56
|
ex |
|
58 |
10 57
|
biimtrid |
|