Metamath Proof Explorer


Theorem uspgrlimlem3

Description: Lemma 3 for uspgrlim . (Contributed by AV, 16-Aug-2025)

Ref Expression
Hypotheses uspgrlim.v V = Vtx G
uspgrlim.w W = Vtx H
uspgrlim.n N = G ClNeighbVtx v
uspgrlim.m M = H ClNeighbVtx F v
uspgrlim.i I = Edg G
uspgrlim.j J = Edg H
uspgrlim.k K = x I | x N
uspgrlim.l L = x J | x M
Assertion uspgrlimlem3 G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto R i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i e K f e = iEdg H h iEdg G -1 e

Proof

Step Hyp Ref Expression
1 uspgrlim.v V = Vtx G
2 uspgrlim.w W = Vtx H
3 uspgrlim.n N = G ClNeighbVtx v
4 uspgrlim.m M = H ClNeighbVtx F v
5 uspgrlim.i I = Edg G
6 uspgrlim.j J = Edg H
7 uspgrlim.k K = x I | x N
8 uspgrlim.l L = x J | x M
9 sseq1 x = e x N e N
10 9 7 elrab2 e K e I e N
11 eqid iEdg G = iEdg G
12 11 uspgrf1oedg G USHGraph iEdg G : dom iEdg G 1-1 onto Edg G
13 f1ocnv iEdg G : dom iEdg G 1-1 onto Edg G iEdg G -1 : Edg G 1-1 onto dom iEdg G
14 f1of iEdg G -1 : Edg G 1-1 onto dom iEdg G iEdg G -1 : Edg G dom iEdg G
15 12 13 14 3syl G USHGraph iEdg G -1 : Edg G dom iEdg G
16 15 3ad2ant1 G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto R i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i iEdg G -1 : Edg G dom iEdg G
17 5 eleq2i e I e Edg G
18 17 biimpi e I e Edg G
19 18 adantr e I e N e Edg G
20 fvco3 iEdg G -1 : Edg G dom iEdg G e Edg G iEdg H h iEdg G -1 e = iEdg H h iEdg G -1 e
21 16 19 20 syl2an G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto R i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i e I e N iEdg H h iEdg G -1 e = iEdg H h iEdg G -1 e
22 f1ocnvdm iEdg G : dom iEdg G 1-1 onto Edg G e Edg G iEdg G -1 e dom iEdg G
23 12 19 22 syl2an G USHGraph e I e N iEdg G -1 e dom iEdg G
24 f1ocnvfv2 iEdg G : dom iEdg G 1-1 onto Edg G e Edg G iEdg G iEdg G -1 e = e
25 12 19 24 syl2an G USHGraph e I e N iEdg G iEdg G -1 e = e
26 simprr G USHGraph e I e N e N
27 25 26 eqsstrd G USHGraph e I e N iEdg G iEdg G -1 e N
28 23 27 jca G USHGraph e I e N iEdg G -1 e dom iEdg G iEdg G iEdg G -1 e N
29 28 adantlr G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto R e I e N iEdg G -1 e dom iEdg G iEdg G iEdg G -1 e N
30 fveq2 x = iEdg G -1 e iEdg G x = iEdg G iEdg G -1 e
31 30 sseq1d x = iEdg G -1 e iEdg G x N iEdg G iEdg G -1 e N
32 31 elrab iEdg G -1 e x dom iEdg G | iEdg G x N iEdg G -1 e dom iEdg G iEdg G iEdg G -1 e N
33 29 32 sylibr G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto R e I e N iEdg G -1 e x dom iEdg G | iEdg G x N
34 fveq2 i = iEdg G -1 e iEdg G i = iEdg G iEdg G -1 e
35 34 imaeq2d i = iEdg G -1 e f iEdg G i = f iEdg G iEdg G -1 e
36 2fveq3 i = iEdg G -1 e iEdg H h i = iEdg H h iEdg G -1 e
37 35 36 eqeq12d i = iEdg G -1 e f iEdg G i = iEdg H h i f iEdg G iEdg G -1 e = iEdg H h iEdg G -1 e
38 37 rspcv iEdg G -1 e x dom iEdg G | iEdg G x N i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i f iEdg G iEdg G -1 e = iEdg H h iEdg G -1 e
39 33 38 syl G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto R e I e N i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i f iEdg G iEdg G -1 e = iEdg H h iEdg G -1 e
40 eqcom f iEdg G iEdg G -1 e = iEdg H h iEdg G -1 e iEdg H h iEdg G -1 e = f iEdg G iEdg G -1 e
41 f1of h : x dom iEdg G | iEdg G x N 1-1 onto R h : x dom iEdg G | iEdg G x N R
42 41 ad2antlr G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto R e I e N h : x dom iEdg G | iEdg G x N R
43 42 33 fvco3d G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto R e I e N iEdg H h iEdg G -1 e = iEdg H h iEdg G -1 e
44 43 eqcomd G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto R e I e N iEdg H h iEdg G -1 e = iEdg H h iEdg G -1 e
45 12 adantr G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto R iEdg G : dom iEdg G 1-1 onto Edg G
46 45 19 24 syl2an G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto R e I e N iEdg G iEdg G -1 e = e
47 46 imaeq2d G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto R e I e N f iEdg G iEdg G -1 e = f e
48 44 47 eqeq12d G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto R e I e N iEdg H h iEdg G -1 e = f iEdg G iEdg G -1 e iEdg H h iEdg G -1 e = f e
49 48 biimpd G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto R e I e N iEdg H h iEdg G -1 e = f iEdg G iEdg G -1 e iEdg H h iEdg G -1 e = f e
50 40 49 biimtrid G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto R e I e N f iEdg G iEdg G -1 e = iEdg H h iEdg G -1 e iEdg H h iEdg G -1 e = f e
51 39 50 syld G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto R e I e N i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i iEdg H h iEdg G -1 e = f e
52 51 ex G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto R e I e N i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i iEdg H h iEdg G -1 e = f e
53 52 com23 G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto R i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i e I e N iEdg H h iEdg G -1 e = f e
54 53 ex G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto R i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i e I e N iEdg H h iEdg G -1 e = f e
55 54 3imp1 G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto R i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i e I e N iEdg H h iEdg G -1 e = f e
56 21 55 eqtr2d G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto R i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i e I e N f e = iEdg H h iEdg G -1 e
57 56 ex G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto R i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i e I e N f e = iEdg H h iEdg G -1 e
58 10 57 biimtrid G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto R i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i e K f e = iEdg H h iEdg G -1 e