| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uspgrlim.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
uspgrlim.w |
⊢ 𝑊 = ( Vtx ‘ 𝐻 ) |
| 3 |
|
uspgrlim.n |
⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑣 ) |
| 4 |
|
uspgrlim.m |
⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) |
| 5 |
|
uspgrlim.i |
⊢ 𝐼 = ( Edg ‘ 𝐺 ) |
| 6 |
|
uspgrlim.j |
⊢ 𝐽 = ( Edg ‘ 𝐻 ) |
| 7 |
|
uspgrlim.k |
⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } |
| 8 |
|
uspgrlim.l |
⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } |
| 9 |
|
sseq1 |
⊢ ( 𝑥 = 𝑒 → ( 𝑥 ⊆ 𝑁 ↔ 𝑒 ⊆ 𝑁 ) ) |
| 10 |
9 7
|
elrab2 |
⊢ ( 𝑒 ∈ 𝐾 ↔ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) |
| 11 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
| 12 |
11
|
uspgrf1oedg |
⊢ ( 𝐺 ∈ USPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 13 |
|
f1ocnv |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) → ◡ ( iEdg ‘ 𝐺 ) : ( Edg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐺 ) ) |
| 14 |
|
f1of |
⊢ ( ◡ ( iEdg ‘ 𝐺 ) : ( Edg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐺 ) → ◡ ( iEdg ‘ 𝐺 ) : ( Edg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐺 ) ) |
| 15 |
12 13 14
|
3syl |
⊢ ( 𝐺 ∈ USPGraph → ◡ ( iEdg ‘ 𝐺 ) : ( Edg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐺 ) ) |
| 16 |
15
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) → ◡ ( iEdg ‘ 𝐺 ) : ( Edg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐺 ) ) |
| 17 |
5
|
eleq2i |
⊢ ( 𝑒 ∈ 𝐼 ↔ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
| 18 |
17
|
biimpi |
⊢ ( 𝑒 ∈ 𝐼 → 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) → 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
| 20 |
|
fvco3 |
⊢ ( ( ◡ ( iEdg ‘ 𝐺 ) : ( Edg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) = ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) |
| 21 |
16 19 20
|
syl2an |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) = ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) |
| 22 |
|
f1ocnvdm |
⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ∈ dom ( iEdg ‘ 𝐺 ) ) |
| 23 |
12 19 22
|
syl2an |
⊢ ( ( 𝐺 ∈ USPGraph ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ∈ dom ( iEdg ‘ 𝐺 ) ) |
| 24 |
|
f1ocnvfv2 |
⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = 𝑒 ) |
| 25 |
12 19 24
|
syl2an |
⊢ ( ( 𝐺 ∈ USPGraph ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = 𝑒 ) |
| 26 |
|
simprr |
⊢ ( ( 𝐺 ∈ USPGraph ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → 𝑒 ⊆ 𝑁 ) |
| 27 |
25 26
|
eqsstrd |
⊢ ( ( 𝐺 ∈ USPGraph ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ⊆ 𝑁 ) |
| 28 |
23 27
|
jca |
⊢ ( ( 𝐺 ∈ USPGraph ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ⊆ 𝑁 ) ) |
| 29 |
28
|
adantlr |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ⊆ 𝑁 ) ) |
| 30 |
|
fveq2 |
⊢ ( 𝑥 = ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) |
| 31 |
30
|
sseq1d |
⊢ ( 𝑥 = ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ⊆ 𝑁 ) ) |
| 32 |
31
|
elrab |
⊢ ( ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ↔ ( ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ⊆ 𝑁 ) ) |
| 33 |
29 32
|
sylibr |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) |
| 34 |
|
fveq2 |
⊢ ( 𝑖 = ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) |
| 35 |
34
|
imaeq2d |
⊢ ( 𝑖 = ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) |
| 36 |
|
2fveq3 |
⊢ ( 𝑖 = ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) |
| 37 |
35 36
|
eqeq12d |
⊢ ( 𝑖 = ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) → ( ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ↔ ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ) |
| 38 |
37
|
rspcv |
⊢ ( ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } → ( ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ) |
| 39 |
33 38
|
syl |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ) |
| 40 |
|
eqcom |
⊢ ( ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) |
| 41 |
|
f1of |
⊢ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 → ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⟶ 𝑅 ) |
| 42 |
41
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⟶ 𝑅 ) |
| 43 |
42 33
|
fvco3d |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) |
| 44 |
43
|
eqcomd |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) = ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) |
| 45 |
12
|
adantr |
⊢ ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 46 |
45 19 24
|
syl2an |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = 𝑒 ) |
| 47 |
46
|
imaeq2d |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) = ( 𝑓 “ 𝑒 ) ) |
| 48 |
44 47
|
eqeq12d |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ↔ ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = ( 𝑓 “ 𝑒 ) ) ) |
| 49 |
48
|
biimpd |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = ( 𝑓 “ 𝑒 ) ) ) |
| 50 |
40 49
|
biimtrid |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = ( 𝑓 “ 𝑒 ) ) ) |
| 51 |
39 50
|
syld |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = ( 𝑓 “ 𝑒 ) ) ) |
| 52 |
51
|
ex |
⊢ ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) → ( ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) → ( ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = ( 𝑓 “ 𝑒 ) ) ) ) |
| 53 |
52
|
com23 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) → ( ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) → ( ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = ( 𝑓 “ 𝑒 ) ) ) ) |
| 54 |
53
|
ex |
⊢ ( 𝐺 ∈ USPGraph → ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 → ( ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) → ( ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = ( 𝑓 “ 𝑒 ) ) ) ) ) |
| 55 |
54
|
3imp1 |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = ( 𝑓 “ 𝑒 ) ) |
| 56 |
21 55
|
eqtr2d |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( 𝑓 “ 𝑒 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) ) |
| 57 |
56
|
ex |
⊢ ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) → ( ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) → ( 𝑓 “ 𝑒 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) ) ) |
| 58 |
10 57
|
biimtrid |
⊢ ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) → ( 𝑒 ∈ 𝐾 → ( 𝑓 “ 𝑒 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) ) ) |