Step |
Hyp |
Ref |
Expression |
1 |
|
uspgrlim.v |
|- V = ( Vtx ` G ) |
2 |
|
uspgrlim.w |
|- W = ( Vtx ` H ) |
3 |
|
uspgrlim.n |
|- N = ( G ClNeighbVtx v ) |
4 |
|
uspgrlim.m |
|- M = ( H ClNeighbVtx ( F ` v ) ) |
5 |
|
uspgrlim.i |
|- I = ( Edg ` G ) |
6 |
|
uspgrlim.j |
|- J = ( Edg ` H ) |
7 |
|
uspgrlim.k |
|- K = { x e. I | x C_ N } |
8 |
|
uspgrlim.l |
|- L = { x e. J | x C_ M } |
9 |
|
sseq1 |
|- ( x = e -> ( x C_ N <-> e C_ N ) ) |
10 |
9 7
|
elrab2 |
|- ( e e. K <-> ( e e. I /\ e C_ N ) ) |
11 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
12 |
11
|
uspgrf1oedg |
|- ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) ) |
13 |
|
f1ocnv |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) -> `' ( iEdg ` G ) : ( Edg ` G ) -1-1-onto-> dom ( iEdg ` G ) ) |
14 |
|
f1of |
|- ( `' ( iEdg ` G ) : ( Edg ` G ) -1-1-onto-> dom ( iEdg ` G ) -> `' ( iEdg ` G ) : ( Edg ` G ) --> dom ( iEdg ` G ) ) |
15 |
12 13 14
|
3syl |
|- ( G e. USPGraph -> `' ( iEdg ` G ) : ( Edg ` G ) --> dom ( iEdg ` G ) ) |
16 |
15
|
3ad2ant1 |
|- ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) -> `' ( iEdg ` G ) : ( Edg ` G ) --> dom ( iEdg ` G ) ) |
17 |
5
|
eleq2i |
|- ( e e. I <-> e e. ( Edg ` G ) ) |
18 |
17
|
biimpi |
|- ( e e. I -> e e. ( Edg ` G ) ) |
19 |
18
|
adantr |
|- ( ( e e. I /\ e C_ N ) -> e e. ( Edg ` G ) ) |
20 |
|
fvco3 |
|- ( ( `' ( iEdg ` G ) : ( Edg ` G ) --> dom ( iEdg ` G ) /\ e e. ( Edg ` G ) ) -> ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) = ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) ) |
21 |
16 19 20
|
syl2an |
|- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) /\ ( e e. I /\ e C_ N ) ) -> ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) = ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) ) |
22 |
|
f1ocnvdm |
|- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) /\ e e. ( Edg ` G ) ) -> ( `' ( iEdg ` G ) ` e ) e. dom ( iEdg ` G ) ) |
23 |
12 19 22
|
syl2an |
|- ( ( G e. USPGraph /\ ( e e. I /\ e C_ N ) ) -> ( `' ( iEdg ` G ) ` e ) e. dom ( iEdg ` G ) ) |
24 |
|
f1ocnvfv2 |
|- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) /\ e e. ( Edg ` G ) ) -> ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) = e ) |
25 |
12 19 24
|
syl2an |
|- ( ( G e. USPGraph /\ ( e e. I /\ e C_ N ) ) -> ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) = e ) |
26 |
|
simprr |
|- ( ( G e. USPGraph /\ ( e e. I /\ e C_ N ) ) -> e C_ N ) |
27 |
25 26
|
eqsstrd |
|- ( ( G e. USPGraph /\ ( e e. I /\ e C_ N ) ) -> ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) C_ N ) |
28 |
23 27
|
jca |
|- ( ( G e. USPGraph /\ ( e e. I /\ e C_ N ) ) -> ( ( `' ( iEdg ` G ) ` e ) e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) C_ N ) ) |
29 |
28
|
adantlr |
|- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> ( ( `' ( iEdg ` G ) ` e ) e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) C_ N ) ) |
30 |
|
fveq2 |
|- ( x = ( `' ( iEdg ` G ) ` e ) -> ( ( iEdg ` G ) ` x ) = ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) |
31 |
30
|
sseq1d |
|- ( x = ( `' ( iEdg ` G ) ` e ) -> ( ( ( iEdg ` G ) ` x ) C_ N <-> ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) C_ N ) ) |
32 |
31
|
elrab |
|- ( ( `' ( iEdg ` G ) ` e ) e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } <-> ( ( `' ( iEdg ` G ) ` e ) e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) C_ N ) ) |
33 |
29 32
|
sylibr |
|- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> ( `' ( iEdg ` G ) ` e ) e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) |
34 |
|
fveq2 |
|- ( i = ( `' ( iEdg ` G ) ` e ) -> ( ( iEdg ` G ) ` i ) = ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) |
35 |
34
|
imaeq2d |
|- ( i = ( `' ( iEdg ` G ) ` e ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( f " ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) ) |
36 |
|
2fveq3 |
|- ( i = ( `' ( iEdg ` G ) ` e ) -> ( ( iEdg ` H ) ` ( h ` i ) ) = ( ( iEdg ` H ) ` ( h ` ( `' ( iEdg ` G ) ` e ) ) ) ) |
37 |
35 36
|
eqeq12d |
|- ( i = ( `' ( iEdg ` G ) ` e ) -> ( ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) <-> ( f " ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) = ( ( iEdg ` H ) ` ( h ` ( `' ( iEdg ` G ) ` e ) ) ) ) ) |
38 |
37
|
rspcv |
|- ( ( `' ( iEdg ` G ) ` e ) e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -> ( A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) -> ( f " ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) = ( ( iEdg ` H ) ` ( h ` ( `' ( iEdg ` G ) ` e ) ) ) ) ) |
39 |
33 38
|
syl |
|- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> ( A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) -> ( f " ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) = ( ( iEdg ` H ) ` ( h ` ( `' ( iEdg ` G ) ` e ) ) ) ) ) |
40 |
|
eqcom |
|- ( ( f " ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) = ( ( iEdg ` H ) ` ( h ` ( `' ( iEdg ` G ) ` e ) ) ) <-> ( ( iEdg ` H ) ` ( h ` ( `' ( iEdg ` G ) ` e ) ) ) = ( f " ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) ) |
41 |
|
f1of |
|- ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R -> h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } --> R ) |
42 |
41
|
ad2antlr |
|- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } --> R ) |
43 |
42 33
|
fvco3d |
|- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) = ( ( iEdg ` H ) ` ( h ` ( `' ( iEdg ` G ) ` e ) ) ) ) |
44 |
43
|
eqcomd |
|- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> ( ( iEdg ` H ) ` ( h ` ( `' ( iEdg ` G ) ` e ) ) ) = ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) ) |
45 |
12
|
adantr |
|- ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) ) |
46 |
45 19 24
|
syl2an |
|- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) = e ) |
47 |
46
|
imaeq2d |
|- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> ( f " ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) = ( f " e ) ) |
48 |
44 47
|
eqeq12d |
|- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> ( ( ( iEdg ` H ) ` ( h ` ( `' ( iEdg ` G ) ` e ) ) ) = ( f " ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) <-> ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) = ( f " e ) ) ) |
49 |
48
|
biimpd |
|- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> ( ( ( iEdg ` H ) ` ( h ` ( `' ( iEdg ` G ) ` e ) ) ) = ( f " ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) -> ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) = ( f " e ) ) ) |
50 |
40 49
|
biimtrid |
|- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> ( ( f " ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) = ( ( iEdg ` H ) ` ( h ` ( `' ( iEdg ` G ) ` e ) ) ) -> ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) = ( f " e ) ) ) |
51 |
39 50
|
syld |
|- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> ( A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) -> ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) = ( f " e ) ) ) |
52 |
51
|
ex |
|- ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) -> ( ( e e. I /\ e C_ N ) -> ( A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) -> ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) = ( f " e ) ) ) ) |
53 |
52
|
com23 |
|- ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) -> ( A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) -> ( ( e e. I /\ e C_ N ) -> ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) = ( f " e ) ) ) ) |
54 |
53
|
ex |
|- ( G e. USPGraph -> ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R -> ( A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) -> ( ( e e. I /\ e C_ N ) -> ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) = ( f " e ) ) ) ) ) |
55 |
54
|
3imp1 |
|- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) /\ ( e e. I /\ e C_ N ) ) -> ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) = ( f " e ) ) |
56 |
21 55
|
eqtr2d |
|- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) /\ ( e e. I /\ e C_ N ) ) -> ( f " e ) = ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) ) |
57 |
56
|
ex |
|- ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) -> ( ( e e. I /\ e C_ N ) -> ( f " e ) = ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) ) ) |
58 |
10 57
|
biimtrid |
|- ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) -> ( e e. K -> ( f " e ) = ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) ) ) |