Step |
Hyp |
Ref |
Expression |
1 |
|
uspgrlim.v |
|- V = ( Vtx ` G ) |
2 |
|
uspgrlim.w |
|- W = ( Vtx ` H ) |
3 |
|
uspgrlim.n |
|- N = ( G ClNeighbVtx v ) |
4 |
|
uspgrlim.m |
|- M = ( H ClNeighbVtx ( F ` v ) ) |
5 |
|
uspgrlim.i |
|- I = ( Edg ` G ) |
6 |
|
uspgrlim.j |
|- J = ( Edg ` H ) |
7 |
|
uspgrlim.k |
|- K = { x e. I | x C_ N } |
8 |
|
uspgrlim.l |
|- L = { x e. J | x C_ M } |
9 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
10 |
9
|
uspgrf1oedg |
|- ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) ) |
11 |
|
f1of |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) ) |
12 |
10 11
|
syl |
|- ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) ) |
13 |
12
|
ad2antrr |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) ) |
14 |
|
simpl |
|- ( ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) -> i e. dom ( iEdg ` G ) ) |
15 |
|
fvco3 |
|- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) /\ i e. dom ( iEdg ` G ) ) -> ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) = ( ( `' ( iEdg ` H ) o. g ) ` ( ( iEdg ` G ) ` i ) ) ) |
16 |
15
|
fveq2d |
|- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) = ( ( iEdg ` H ) ` ( ( `' ( iEdg ` H ) o. g ) ` ( ( iEdg ` G ) ` i ) ) ) ) |
17 |
13 14 16
|
syl2an |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) = ( ( iEdg ` H ) ` ( ( `' ( iEdg ` H ) o. g ) ` ( ( iEdg ` G ) ` i ) ) ) ) |
18 |
|
eqid |
|- ( iEdg ` H ) = ( iEdg ` H ) |
19 |
18
|
uspgrf1oedg |
|- ( H e. USPGraph -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) ) |
20 |
19
|
ad3antlr |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) ) |
21 |
|
ssrab2 |
|- { x e. J | x C_ M } C_ J |
22 |
6
|
eqcomi |
|- ( Edg ` H ) = J |
23 |
21 8 22
|
3sstr4i |
|- L C_ ( Edg ` H ) |
24 |
|
f1of |
|- ( g : K -1-1-onto-> L -> g : K --> L ) |
25 |
24
|
adantr |
|- ( ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) -> g : K --> L ) |
26 |
25
|
adantl |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> g : K --> L ) |
27 |
26
|
adantr |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> g : K --> L ) |
28 |
13
|
ffund |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> Fun ( iEdg ` G ) ) |
29 |
9
|
iedgedg |
|- ( ( Fun ( iEdg ` G ) /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` i ) e. ( Edg ` G ) ) |
30 |
28 14 29
|
syl2an |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` G ) ` i ) e. ( Edg ` G ) ) |
31 |
30 5
|
eleqtrrdi |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` G ) ` i ) e. I ) |
32 |
|
simprr |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` G ) ` i ) C_ N ) |
33 |
|
sseq1 |
|- ( x = ( ( iEdg ` G ) ` i ) -> ( x C_ N <-> ( ( iEdg ` G ) ` i ) C_ N ) ) |
34 |
33 7
|
elrab2 |
|- ( ( ( iEdg ` G ) ` i ) e. K <-> ( ( ( iEdg ` G ) ` i ) e. I /\ ( ( iEdg ` G ) ` i ) C_ N ) ) |
35 |
31 32 34
|
sylanbrc |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` G ) ` i ) e. K ) |
36 |
27 35
|
ffvelcdmd |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( g ` ( ( iEdg ` G ) ` i ) ) e. L ) |
37 |
23 36
|
sselid |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( g ` ( ( iEdg ` G ) ` i ) ) e. ( Edg ` H ) ) |
38 |
|
f1ocnvfv2 |
|- ( ( ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) /\ ( g ` ( ( iEdg ` G ) ` i ) ) e. ( Edg ` H ) ) -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` ( g ` ( ( iEdg ` G ) ` i ) ) ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) |
39 |
20 37 38
|
syl2anc |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` ( g ` ( ( iEdg ` G ) ` i ) ) ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) |
40 |
|
fvco3 |
|- ( ( g : K --> L /\ ( ( iEdg ` G ) ` i ) e. K ) -> ( ( `' ( iEdg ` H ) o. g ) ` ( ( iEdg ` G ) ` i ) ) = ( `' ( iEdg ` H ) ` ( g ` ( ( iEdg ` G ) ` i ) ) ) ) |
41 |
40
|
fveq2d |
|- ( ( g : K --> L /\ ( ( iEdg ` G ) ` i ) e. K ) -> ( ( iEdg ` H ) ` ( ( `' ( iEdg ` H ) o. g ) ` ( ( iEdg ` G ) ` i ) ) ) = ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` ( g ` ( ( iEdg ` G ) ` i ) ) ) ) ) |
42 |
27 35 41
|
syl2anc |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` H ) ` ( ( `' ( iEdg ` H ) o. g ) ` ( ( iEdg ` G ) ` i ) ) ) = ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` ( g ` ( ( iEdg ` G ) ` i ) ) ) ) ) |
43 |
5
|
eqcomi |
|- ( Edg ` G ) = I |
44 |
|
feq3 |
|- ( ( Edg ` G ) = I -> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> I ) ) |
45 |
43 44
|
ax-mp |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> I ) |
46 |
45
|
biimpi |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> I ) |
47 |
10 11 46
|
3syl |
|- ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> I ) |
48 |
47
|
ad2antrr |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> I ) |
49 |
14
|
adantl |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> i e. dom ( iEdg ` G ) ) |
50 |
48 49
|
ffvelcdmd |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` G ) ` i ) e. I ) |
51 |
|
simprr |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` G ) ` i ) C_ N ) |
52 |
50 51 34
|
sylanbrc |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` G ) ` i ) e. K ) |
53 |
|
imaeq2 |
|- ( e = ( ( iEdg ` G ) ` i ) -> ( f " e ) = ( f " ( ( iEdg ` G ) ` i ) ) ) |
54 |
|
fveq2 |
|- ( e = ( ( iEdg ` G ) ` i ) -> ( g ` e ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) |
55 |
53 54
|
eqeq12d |
|- ( e = ( ( iEdg ` G ) ` i ) -> ( ( f " e ) = ( g ` e ) <-> ( f " ( ( iEdg ` G ) ` i ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) ) |
56 |
55
|
rspcv |
|- ( ( ( iEdg ` G ) ` i ) e. K -> ( A. e e. K ( f " e ) = ( g ` e ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) ) |
57 |
52 56
|
syl |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( A. e e. K ( f " e ) = ( g ` e ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) ) |
58 |
57
|
ex |
|- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) -> ( A. e e. K ( f " e ) = ( g ` e ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) ) ) |
59 |
58
|
com23 |
|- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( A. e e. K ( f " e ) = ( g ` e ) -> ( ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) ) ) |
60 |
59
|
adantld |
|- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) -> ( ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) ) ) |
61 |
60
|
imp31 |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) |
62 |
39 42 61
|
3eqtr4d |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` H ) ` ( ( `' ( iEdg ` H ) o. g ) ` ( ( iEdg ` G ) ` i ) ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) |
63 |
17 62
|
eqtr2d |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) ) |
64 |
63
|
ex |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) ) ) |