Metamath Proof Explorer


Theorem uspgrlimlem4

Description: Lemma 4 for uspgrlim . (Contributed by AV, 16-Aug-2025)

Ref Expression
Hypotheses uspgrlim.v
|- V = ( Vtx ` G )
uspgrlim.w
|- W = ( Vtx ` H )
uspgrlim.n
|- N = ( G ClNeighbVtx v )
uspgrlim.m
|- M = ( H ClNeighbVtx ( F ` v ) )
uspgrlim.i
|- I = ( Edg ` G )
uspgrlim.j
|- J = ( Edg ` H )
uspgrlim.k
|- K = { x e. I | x C_ N }
uspgrlim.l
|- L = { x e. J | x C_ M }
Assertion uspgrlimlem4
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) ) )

Proof

Step Hyp Ref Expression
1 uspgrlim.v
 |-  V = ( Vtx ` G )
2 uspgrlim.w
 |-  W = ( Vtx ` H )
3 uspgrlim.n
 |-  N = ( G ClNeighbVtx v )
4 uspgrlim.m
 |-  M = ( H ClNeighbVtx ( F ` v ) )
5 uspgrlim.i
 |-  I = ( Edg ` G )
6 uspgrlim.j
 |-  J = ( Edg ` H )
7 uspgrlim.k
 |-  K = { x e. I | x C_ N }
8 uspgrlim.l
 |-  L = { x e. J | x C_ M }
9 eqid
 |-  ( iEdg ` G ) = ( iEdg ` G )
10 9 uspgrf1oedg
 |-  ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) )
11 f1of
 |-  ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) )
12 10 11 syl
 |-  ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) )
13 12 ad2antrr
 |-  ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) )
14 simpl
 |-  ( ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) -> i e. dom ( iEdg ` G ) )
15 fvco3
 |-  ( ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) /\ i e. dom ( iEdg ` G ) ) -> ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) = ( ( `' ( iEdg ` H ) o. g ) ` ( ( iEdg ` G ) ` i ) ) )
16 15 fveq2d
 |-  ( ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) = ( ( iEdg ` H ) ` ( ( `' ( iEdg ` H ) o. g ) ` ( ( iEdg ` G ) ` i ) ) ) )
17 13 14 16 syl2an
 |-  ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) = ( ( iEdg ` H ) ` ( ( `' ( iEdg ` H ) o. g ) ` ( ( iEdg ` G ) ` i ) ) ) )
18 eqid
 |-  ( iEdg ` H ) = ( iEdg ` H )
19 18 uspgrf1oedg
 |-  ( H e. USPGraph -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) )
20 19 ad3antlr
 |-  ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) )
21 ssrab2
 |-  { x e. J | x C_ M } C_ J
22 6 eqcomi
 |-  ( Edg ` H ) = J
23 21 8 22 3sstr4i
 |-  L C_ ( Edg ` H )
24 f1of
 |-  ( g : K -1-1-onto-> L -> g : K --> L )
25 24 adantr
 |-  ( ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) -> g : K --> L )
26 25 adantl
 |-  ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> g : K --> L )
27 26 adantr
 |-  ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> g : K --> L )
28 13 ffund
 |-  ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> Fun ( iEdg ` G ) )
29 9 iedgedg
 |-  ( ( Fun ( iEdg ` G ) /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` i ) e. ( Edg ` G ) )
30 28 14 29 syl2an
 |-  ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` G ) ` i ) e. ( Edg ` G ) )
31 30 5 eleqtrrdi
 |-  ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` G ) ` i ) e. I )
32 simprr
 |-  ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` G ) ` i ) C_ N )
33 sseq1
 |-  ( x = ( ( iEdg ` G ) ` i ) -> ( x C_ N <-> ( ( iEdg ` G ) ` i ) C_ N ) )
34 33 7 elrab2
 |-  ( ( ( iEdg ` G ) ` i ) e. K <-> ( ( ( iEdg ` G ) ` i ) e. I /\ ( ( iEdg ` G ) ` i ) C_ N ) )
35 31 32 34 sylanbrc
 |-  ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` G ) ` i ) e. K )
36 27 35 ffvelcdmd
 |-  ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( g ` ( ( iEdg ` G ) ` i ) ) e. L )
37 23 36 sselid
 |-  ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( g ` ( ( iEdg ` G ) ` i ) ) e. ( Edg ` H ) )
38 f1ocnvfv2
 |-  ( ( ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) /\ ( g ` ( ( iEdg ` G ) ` i ) ) e. ( Edg ` H ) ) -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` ( g ` ( ( iEdg ` G ) ` i ) ) ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) )
39 20 37 38 syl2anc
 |-  ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` ( g ` ( ( iEdg ` G ) ` i ) ) ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) )
40 fvco3
 |-  ( ( g : K --> L /\ ( ( iEdg ` G ) ` i ) e. K ) -> ( ( `' ( iEdg ` H ) o. g ) ` ( ( iEdg ` G ) ` i ) ) = ( `' ( iEdg ` H ) ` ( g ` ( ( iEdg ` G ) ` i ) ) ) )
41 40 fveq2d
 |-  ( ( g : K --> L /\ ( ( iEdg ` G ) ` i ) e. K ) -> ( ( iEdg ` H ) ` ( ( `' ( iEdg ` H ) o. g ) ` ( ( iEdg ` G ) ` i ) ) ) = ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` ( g ` ( ( iEdg ` G ) ` i ) ) ) ) )
42 27 35 41 syl2anc
 |-  ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` H ) ` ( ( `' ( iEdg ` H ) o. g ) ` ( ( iEdg ` G ) ` i ) ) ) = ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` ( g ` ( ( iEdg ` G ) ` i ) ) ) ) )
43 5 eqcomi
 |-  ( Edg ` G ) = I
44 feq3
 |-  ( ( Edg ` G ) = I -> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> I ) )
45 43 44 ax-mp
 |-  ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> I )
46 45 biimpi
 |-  ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> I )
47 10 11 46 3syl
 |-  ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> I )
48 47 ad2antrr
 |-  ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> I )
49 14 adantl
 |-  ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> i e. dom ( iEdg ` G ) )
50 48 49 ffvelcdmd
 |-  ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` G ) ` i ) e. I )
51 simprr
 |-  ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` G ) ` i ) C_ N )
52 50 51 34 sylanbrc
 |-  ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` G ) ` i ) e. K )
53 imaeq2
 |-  ( e = ( ( iEdg ` G ) ` i ) -> ( f " e ) = ( f " ( ( iEdg ` G ) ` i ) ) )
54 fveq2
 |-  ( e = ( ( iEdg ` G ) ` i ) -> ( g ` e ) = ( g ` ( ( iEdg ` G ) ` i ) ) )
55 53 54 eqeq12d
 |-  ( e = ( ( iEdg ` G ) ` i ) -> ( ( f " e ) = ( g ` e ) <-> ( f " ( ( iEdg ` G ) ` i ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) )
56 55 rspcv
 |-  ( ( ( iEdg ` G ) ` i ) e. K -> ( A. e e. K ( f " e ) = ( g ` e ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) )
57 52 56 syl
 |-  ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( A. e e. K ( f " e ) = ( g ` e ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) )
58 57 ex
 |-  ( ( G e. USPGraph /\ H e. USPGraph ) -> ( ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) -> ( A. e e. K ( f " e ) = ( g ` e ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) ) )
59 58 com23
 |-  ( ( G e. USPGraph /\ H e. USPGraph ) -> ( A. e e. K ( f " e ) = ( g ` e ) -> ( ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) ) )
60 59 adantld
 |-  ( ( G e. USPGraph /\ H e. USPGraph ) -> ( ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) -> ( ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) ) )
61 60 imp31
 |-  ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) )
62 39 42 61 3eqtr4d
 |-  ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` H ) ` ( ( `' ( iEdg ` H ) o. g ) ` ( ( iEdg ` G ) ` i ) ) ) = ( f " ( ( iEdg ` G ) ` i ) ) )
63 17 62 eqtr2d
 |-  ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) )
64 63 ex
 |-  ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) ) )