| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uspgrlim.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
uspgrlim.w |
⊢ 𝑊 = ( Vtx ‘ 𝐻 ) |
| 3 |
|
uspgrlim.n |
⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑣 ) |
| 4 |
|
uspgrlim.m |
⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) |
| 5 |
|
uspgrlim.i |
⊢ 𝐼 = ( Edg ‘ 𝐺 ) |
| 6 |
|
uspgrlim.j |
⊢ 𝐽 = ( Edg ‘ 𝐻 ) |
| 7 |
|
uspgrlim.k |
⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } |
| 8 |
|
uspgrlim.l |
⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } |
| 9 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
| 10 |
9
|
uspgrf1oedg |
⊢ ( 𝐺 ∈ USPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 11 |
|
f1of |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( Edg ‘ 𝐺 ) ) |
| 12 |
10 11
|
syl |
⊢ ( 𝐺 ∈ USPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( Edg ‘ 𝐺 ) ) |
| 13 |
12
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( Edg ‘ 𝐺 ) ) |
| 14 |
|
simpl |
⊢ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) → 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) |
| 15 |
|
fvco3 |
⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( Edg ‘ 𝐺 ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) = ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 16 |
15
|
fveq2d |
⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( Edg ‘ 𝐺 ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 17 |
13 14 16
|
syl2an |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 18 |
|
eqid |
⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) |
| 19 |
18
|
uspgrf1oedg |
⊢ ( 𝐻 ∈ USPGraph → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 20 |
19
|
ad3antlr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 21 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } ⊆ 𝐽 |
| 22 |
6
|
eqcomi |
⊢ ( Edg ‘ 𝐻 ) = 𝐽 |
| 23 |
21 8 22
|
3sstr4i |
⊢ 𝐿 ⊆ ( Edg ‘ 𝐻 ) |
| 24 |
|
f1of |
⊢ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 → 𝑔 : 𝐾 ⟶ 𝐿 ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → 𝑔 : 𝐾 ⟶ 𝐿 ) |
| 26 |
25
|
adantl |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → 𝑔 : 𝐾 ⟶ 𝐿 ) |
| 27 |
26
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → 𝑔 : 𝐾 ⟶ 𝐿 ) |
| 28 |
13
|
ffund |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → Fun ( iEdg ‘ 𝐺 ) ) |
| 29 |
9
|
iedgedg |
⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ ( Edg ‘ 𝐺 ) ) |
| 30 |
28 14 29
|
syl2an |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ ( Edg ‘ 𝐺 ) ) |
| 31 |
30 5
|
eleqtrrdi |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐼 ) |
| 32 |
|
simprr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) |
| 33 |
|
sseq1 |
⊢ ( 𝑥 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ( 𝑥 ⊆ 𝑁 ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) |
| 34 |
33 7
|
elrab2 |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐾 ↔ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐼 ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) |
| 35 |
31 32 34
|
sylanbrc |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐾 ) |
| 36 |
27 35
|
ffvelcdmd |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∈ 𝐿 ) |
| 37 |
23 36
|
sselid |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 38 |
|
f1ocnvfv2 |
⊢ ( ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ∧ ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∈ ( Edg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 39 |
20 37 38
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 40 |
|
fvco3 |
⊢ ( ( 𝑔 : 𝐾 ⟶ 𝐿 ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐾 ) → ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 41 |
40
|
fveq2d |
⊢ ( ( 𝑔 : 𝐾 ⟶ 𝐿 ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐾 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
| 42 |
27 35 41
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
| 43 |
5
|
eqcomi |
⊢ ( Edg ‘ 𝐺 ) = 𝐼 |
| 44 |
|
feq3 |
⊢ ( ( Edg ‘ 𝐺 ) = 𝐼 → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( Edg ‘ 𝐺 ) ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝐼 ) ) |
| 45 |
43 44
|
ax-mp |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( Edg ‘ 𝐺 ) ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝐼 ) |
| 46 |
45
|
biimpi |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( Edg ‘ 𝐺 ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝐼 ) |
| 47 |
10 11 46
|
3syl |
⊢ ( 𝐺 ∈ USPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝐼 ) |
| 48 |
47
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝐼 ) |
| 49 |
14
|
adantl |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) |
| 50 |
48 49
|
ffvelcdmd |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐼 ) |
| 51 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) |
| 52 |
50 51 34
|
sylanbrc |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐾 ) |
| 53 |
|
imaeq2 |
⊢ ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ( 𝑓 “ 𝑒 ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 54 |
|
fveq2 |
⊢ ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ( 𝑔 ‘ 𝑒 ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 55 |
53 54
|
eqeq12d |
⊢ ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ( ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ↔ ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 56 |
55
|
rspcv |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐾 → ( ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 57 |
52 56
|
syl |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 58 |
57
|
ex |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) → ( ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
| 59 |
58
|
com23 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) → ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
| 60 |
59
|
adantld |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
| 61 |
60
|
imp31 |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 62 |
39 42 61
|
3eqtr4d |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 63 |
17 62
|
eqtr2d |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) ) |
| 64 |
63
|
ex |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) ) ) |