| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uspgrlim.v |
|
| 2 |
|
uspgrlim.w |
|
| 3 |
|
uspgrlim.n |
|
| 4 |
|
uspgrlim.m |
|
| 5 |
|
uspgrlim.i |
|
| 6 |
|
uspgrlim.j |
|
| 7 |
|
uspgrlim.k |
|
| 8 |
|
uspgrlim.l |
|
| 9 |
|
eqid |
|
| 10 |
9
|
uspgrf1oedg |
|
| 11 |
|
f1of |
|
| 12 |
10 11
|
syl |
|
| 13 |
12
|
ad2antrr |
|
| 14 |
|
simpl |
|
| 15 |
|
fvco3 |
|
| 16 |
15
|
fveq2d |
|
| 17 |
13 14 16
|
syl2an |
|
| 18 |
|
eqid |
|
| 19 |
18
|
uspgrf1oedg |
|
| 20 |
19
|
ad3antlr |
|
| 21 |
|
ssrab2 |
|
| 22 |
6
|
eqcomi |
|
| 23 |
21 8 22
|
3sstr4i |
|
| 24 |
|
f1of |
|
| 25 |
24
|
adantr |
|
| 26 |
25
|
adantl |
|
| 27 |
26
|
adantr |
|
| 28 |
13
|
ffund |
|
| 29 |
9
|
iedgedg |
|
| 30 |
28 14 29
|
syl2an |
|
| 31 |
30 5
|
eleqtrrdi |
|
| 32 |
|
simprr |
|
| 33 |
|
sseq1 |
|
| 34 |
33 7
|
elrab2 |
|
| 35 |
31 32 34
|
sylanbrc |
|
| 36 |
27 35
|
ffvelcdmd |
|
| 37 |
23 36
|
sselid |
|
| 38 |
|
f1ocnvfv2 |
|
| 39 |
20 37 38
|
syl2anc |
|
| 40 |
|
fvco3 |
|
| 41 |
40
|
fveq2d |
|
| 42 |
27 35 41
|
syl2anc |
|
| 43 |
5
|
eqcomi |
|
| 44 |
|
feq3 |
|
| 45 |
43 44
|
ax-mp |
|
| 46 |
45
|
biimpi |
|
| 47 |
10 11 46
|
3syl |
|
| 48 |
47
|
ad2antrr |
|
| 49 |
14
|
adantl |
|
| 50 |
48 49
|
ffvelcdmd |
|
| 51 |
|
simprr |
|
| 52 |
50 51 34
|
sylanbrc |
|
| 53 |
|
imaeq2 |
|
| 54 |
|
fveq2 |
|
| 55 |
53 54
|
eqeq12d |
|
| 56 |
55
|
rspcv |
|
| 57 |
52 56
|
syl |
|
| 58 |
57
|
ex |
|
| 59 |
58
|
com23 |
|
| 60 |
59
|
adantld |
|
| 61 |
60
|
imp31 |
|
| 62 |
39 42 61
|
3eqtr4d |
|
| 63 |
17 62
|
eqtr2d |
|
| 64 |
63
|
ex |
|