Metamath Proof Explorer


Theorem uspgrlimlem4

Description: Lemma 4 for uspgrlim . (Contributed by AV, 16-Aug-2025)

Ref Expression
Hypotheses uspgrlim.v V = Vtx G
uspgrlim.w W = Vtx H
uspgrlim.n N = G ClNeighbVtx v
uspgrlim.m M = H ClNeighbVtx F v
uspgrlim.i I = Edg G
uspgrlim.j J = Edg H
uspgrlim.k K = x I | x N
uspgrlim.l L = x J | x M
Assertion uspgrlimlem4 G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e i dom iEdg G iEdg G i N f iEdg G i = iEdg H iEdg H -1 g iEdg G i

Proof

Step Hyp Ref Expression
1 uspgrlim.v V = Vtx G
2 uspgrlim.w W = Vtx H
3 uspgrlim.n N = G ClNeighbVtx v
4 uspgrlim.m M = H ClNeighbVtx F v
5 uspgrlim.i I = Edg G
6 uspgrlim.j J = Edg H
7 uspgrlim.k K = x I | x N
8 uspgrlim.l L = x J | x M
9 eqid iEdg G = iEdg G
10 9 uspgrf1oedg G USHGraph iEdg G : dom iEdg G 1-1 onto Edg G
11 f1of iEdg G : dom iEdg G 1-1 onto Edg G iEdg G : dom iEdg G Edg G
12 10 11 syl G USHGraph iEdg G : dom iEdg G Edg G
13 12 ad2antrr G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e iEdg G : dom iEdg G Edg G
14 simpl i dom iEdg G iEdg G i N i dom iEdg G
15 fvco3 iEdg G : dom iEdg G Edg G i dom iEdg G iEdg H -1 g iEdg G i = iEdg H -1 g iEdg G i
16 15 fveq2d iEdg G : dom iEdg G Edg G i dom iEdg G iEdg H iEdg H -1 g iEdg G i = iEdg H iEdg H -1 g iEdg G i
17 13 14 16 syl2an G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e i dom iEdg G iEdg G i N iEdg H iEdg H -1 g iEdg G i = iEdg H iEdg H -1 g iEdg G i
18 eqid iEdg H = iEdg H
19 18 uspgrf1oedg H USHGraph iEdg H : dom iEdg H 1-1 onto Edg H
20 19 ad3antlr G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e i dom iEdg G iEdg G i N iEdg H : dom iEdg H 1-1 onto Edg H
21 ssrab2 x J | x M J
22 6 eqcomi Edg H = J
23 21 8 22 3sstr4i L Edg H
24 f1of g : K 1-1 onto L g : K L
25 24 adantr g : K 1-1 onto L e K f e = g e g : K L
26 25 adantl G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e g : K L
27 26 adantr G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e i dom iEdg G iEdg G i N g : K L
28 13 ffund G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e Fun iEdg G
29 9 iedgedg Fun iEdg G i dom iEdg G iEdg G i Edg G
30 28 14 29 syl2an G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e i dom iEdg G iEdg G i N iEdg G i Edg G
31 30 5 eleqtrrdi G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e i dom iEdg G iEdg G i N iEdg G i I
32 simprr G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e i dom iEdg G iEdg G i N iEdg G i N
33 sseq1 x = iEdg G i x N iEdg G i N
34 33 7 elrab2 iEdg G i K iEdg G i I iEdg G i N
35 31 32 34 sylanbrc G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e i dom iEdg G iEdg G i N iEdg G i K
36 27 35 ffvelcdmd G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e i dom iEdg G iEdg G i N g iEdg G i L
37 23 36 sselid G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e i dom iEdg G iEdg G i N g iEdg G i Edg H
38 f1ocnvfv2 iEdg H : dom iEdg H 1-1 onto Edg H g iEdg G i Edg H iEdg H iEdg H -1 g iEdg G i = g iEdg G i
39 20 37 38 syl2anc G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e i dom iEdg G iEdg G i N iEdg H iEdg H -1 g iEdg G i = g iEdg G i
40 fvco3 g : K L iEdg G i K iEdg H -1 g iEdg G i = iEdg H -1 g iEdg G i
41 40 fveq2d g : K L iEdg G i K iEdg H iEdg H -1 g iEdg G i = iEdg H iEdg H -1 g iEdg G i
42 27 35 41 syl2anc G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e i dom iEdg G iEdg G i N iEdg H iEdg H -1 g iEdg G i = iEdg H iEdg H -1 g iEdg G i
43 5 eqcomi Edg G = I
44 feq3 Edg G = I iEdg G : dom iEdg G Edg G iEdg G : dom iEdg G I
45 43 44 ax-mp iEdg G : dom iEdg G Edg G iEdg G : dom iEdg G I
46 45 biimpi iEdg G : dom iEdg G Edg G iEdg G : dom iEdg G I
47 10 11 46 3syl G USHGraph iEdg G : dom iEdg G I
48 47 ad2antrr G USHGraph H USHGraph i dom iEdg G iEdg G i N iEdg G : dom iEdg G I
49 14 adantl G USHGraph H USHGraph i dom iEdg G iEdg G i N i dom iEdg G
50 48 49 ffvelcdmd G USHGraph H USHGraph i dom iEdg G iEdg G i N iEdg G i I
51 simprr G USHGraph H USHGraph i dom iEdg G iEdg G i N iEdg G i N
52 50 51 34 sylanbrc G USHGraph H USHGraph i dom iEdg G iEdg G i N iEdg G i K
53 imaeq2 e = iEdg G i f e = f iEdg G i
54 fveq2 e = iEdg G i g e = g iEdg G i
55 53 54 eqeq12d e = iEdg G i f e = g e f iEdg G i = g iEdg G i
56 55 rspcv iEdg G i K e K f e = g e f iEdg G i = g iEdg G i
57 52 56 syl G USHGraph H USHGraph i dom iEdg G iEdg G i N e K f e = g e f iEdg G i = g iEdg G i
58 57 ex G USHGraph H USHGraph i dom iEdg G iEdg G i N e K f e = g e f iEdg G i = g iEdg G i
59 58 com23 G USHGraph H USHGraph e K f e = g e i dom iEdg G iEdg G i N f iEdg G i = g iEdg G i
60 59 adantld G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e i dom iEdg G iEdg G i N f iEdg G i = g iEdg G i
61 60 imp31 G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e i dom iEdg G iEdg G i N f iEdg G i = g iEdg G i
62 39 42 61 3eqtr4d G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e i dom iEdg G iEdg G i N iEdg H iEdg H -1 g iEdg G i = f iEdg G i
63 17 62 eqtr2d G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e i dom iEdg G iEdg G i N f iEdg G i = iEdg H iEdg H -1 g iEdg G i
64 63 ex G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e i dom iEdg G iEdg G i N f iEdg G i = iEdg H iEdg H -1 g iEdg G i