Step |
Hyp |
Ref |
Expression |
1 |
|
uspgrlim.v |
|
2 |
|
uspgrlim.w |
|
3 |
|
uspgrlim.n |
|
4 |
|
uspgrlim.m |
|
5 |
|
uspgrlim.i |
|
6 |
|
uspgrlim.j |
|
7 |
|
uspgrlim.k |
|
8 |
|
uspgrlim.l |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
1 2 3 4 9 10 11 12
|
isgrlim2 |
|
14 |
|
fvex |
|
15 |
|
vex |
|
16 |
14 15
|
coex |
|
17 |
|
fvex |
|
18 |
17
|
cnvex |
|
19 |
16 18
|
coex |
|
20 |
19
|
a1i |
|
21 |
9
|
uspgrf1oedg |
|
22 |
21
|
ad2antrr |
|
23 |
|
simprl |
|
24 |
10
|
uspgrf1oedg |
|
25 |
24
|
ad2antlr |
|
26 |
|
ssrab2 |
|
27 |
|
ssrab2 |
|
28 |
26 27
|
pm3.2i |
|
29 |
28
|
a1i |
|
30 |
|
3f1oss1 |
|
31 |
22 23 25 29 30
|
syl31anc |
|
32 |
|
eqidd |
|
33 |
3 5 7
|
uspgrlimlem1 |
|
34 |
33
|
ad2antrr |
|
35 |
4 6 8
|
uspgrlimlem1 |
|
36 |
35
|
ad2antlr |
|
37 |
32 34 36
|
f1oeq123d |
|
38 |
31 37
|
mpbird |
|
39 |
|
simpll |
|
40 |
|
simprr |
|
41 |
1 2 3 4 5 6 7 8
|
uspgrlimlem3 |
|
42 |
39 23 40 41
|
syl3anc |
|
43 |
42
|
ralrimiv |
|
44 |
38 43
|
jca |
|
45 |
|
f1oeq1 |
|
46 |
|
fveq1 |
|
47 |
46
|
eqeq2d |
|
48 |
47
|
ralbidv |
|
49 |
45 48
|
anbi12d |
|
50 |
20 44 49
|
spcedv |
|
51 |
50
|
ex |
|
52 |
51
|
exlimdv |
|
53 |
14
|
cnvex |
|
54 |
|
vex |
|
55 |
53 54
|
coex |
|
56 |
55 17
|
coex |
|
57 |
56
|
a1i |
|
58 |
21
|
ad2antrr |
|
59 |
|
simprl |
|
60 |
24
|
ad2antlr |
|
61 |
5
|
rabeqi |
|
62 |
7 61
|
eqtri |
|
63 |
62
|
ssrab3 |
|
64 |
6
|
rabeqi |
|
65 |
8 64
|
eqtri |
|
66 |
65
|
ssrab3 |
|
67 |
63 66
|
pm3.2i |
|
68 |
67
|
a1i |
|
69 |
|
3f1oss2 |
|
70 |
58 59 60 68 69
|
syl31anc |
|
71 |
|
eqidd |
|
72 |
3 5 7
|
uspgrlimlem2 |
|
73 |
72
|
ad2antrr |
|
74 |
4 6 8
|
uspgrlimlem2 |
|
75 |
74
|
ad2antlr |
|
76 |
71 73 75
|
f1oeq123d |
|
77 |
70 76
|
mpbid |
|
78 |
|
fveq2 |
|
79 |
78
|
sseq1d |
|
80 |
79
|
elrab |
|
81 |
1 2 3 4 5 6 7 8
|
uspgrlimlem4 |
|
82 |
80 81
|
biimtrid |
|
83 |
82
|
ralrimiv |
|
84 |
77 83
|
jca |
|
85 |
|
f1oeq1 |
|
86 |
|
fveq1 |
|
87 |
86
|
fveq2d |
|
88 |
87
|
eqeq2d |
|
89 |
88
|
ralbidv |
|
90 |
85 89
|
anbi12d |
|
91 |
57 84 90
|
spcedv |
|
92 |
91
|
ex |
|
93 |
92
|
exlimdv |
|
94 |
52 93
|
impbid |
|
95 |
94
|
anbi2d |
|
96 |
95
|
exbidv |
|
97 |
96
|
ralbidv |
|
98 |
97
|
anbi2d |
|
99 |
98
|
3adant3 |
|
100 |
13 99
|
bitrd |
|