Metamath Proof Explorer


Theorem uspgrlim

Description: A local isomorphism of simple pseudographs is a bijection between their vertices that preserves neighborhoods, expressed by properties of their edges (not edge functions as in isgrlim2 ). (Contributed by AV, 15-Aug-2025)

Ref Expression
Hypotheses uspgrlim.v V = Vtx G
uspgrlim.w W = Vtx H
uspgrlim.n N = G ClNeighbVtx v
uspgrlim.m M = H ClNeighbVtx F v
uspgrlim.i I = Edg G
uspgrlim.j J = Edg H
uspgrlim.k K = x I | x N
uspgrlim.l L = x J | x M
Assertion uspgrlim G USHGraph H USHGraph F Z F G GraphLocIso H F : V 1-1 onto W v V f f : N 1-1 onto M g g : K 1-1 onto L e K f e = g e

Proof

Step Hyp Ref Expression
1 uspgrlim.v V = Vtx G
2 uspgrlim.w W = Vtx H
3 uspgrlim.n N = G ClNeighbVtx v
4 uspgrlim.m M = H ClNeighbVtx F v
5 uspgrlim.i I = Edg G
6 uspgrlim.j J = Edg H
7 uspgrlim.k K = x I | x N
8 uspgrlim.l L = x J | x M
9 eqid iEdg G = iEdg G
10 eqid iEdg H = iEdg H
11 eqid x dom iEdg G | iEdg G x N = x dom iEdg G | iEdg G x N
12 eqid x dom iEdg H | iEdg H x M = x dom iEdg H | iEdg H x M
13 1 2 3 4 9 10 11 12 isgrlim2 G USHGraph H USHGraph F Z F G GraphLocIso H F : V 1-1 onto W v V f f : N 1-1 onto M h h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i
14 fvex iEdg H V
15 vex h V
16 14 15 coex iEdg H h V
17 fvex iEdg G V
18 17 cnvex iEdg G -1 V
19 16 18 coex iEdg H h iEdg G -1 V
20 19 a1i G USHGraph H USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i iEdg H h iEdg G -1 V
21 9 uspgrf1oedg G USHGraph iEdg G : dom iEdg G 1-1 onto Edg G
22 21 ad2antrr G USHGraph H USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i iEdg G : dom iEdg G 1-1 onto Edg G
23 simprl G USHGraph H USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M
24 10 uspgrf1oedg H USHGraph iEdg H : dom iEdg H 1-1 onto Edg H
25 24 ad2antlr G USHGraph H USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i iEdg H : dom iEdg H 1-1 onto Edg H
26 ssrab2 x dom iEdg G | iEdg G x N dom iEdg G
27 ssrab2 x dom iEdg H | iEdg H x M dom iEdg H
28 26 27 pm3.2i x dom iEdg G | iEdg G x N dom iEdg G x dom iEdg H | iEdg H x M dom iEdg H
29 28 a1i G USHGraph H USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i x dom iEdg G | iEdg G x N dom iEdg G x dom iEdg H | iEdg H x M dom iEdg H
30 3f1oss1 iEdg G : dom iEdg G 1-1 onto Edg G h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M iEdg H : dom iEdg H 1-1 onto Edg H x dom iEdg G | iEdg G x N dom iEdg G x dom iEdg H | iEdg H x M dom iEdg H iEdg H h iEdg G -1 : iEdg G x dom iEdg G | iEdg G x N 1-1 onto iEdg H x dom iEdg H | iEdg H x M
31 22 23 25 29 30 syl31anc G USHGraph H USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i iEdg H h iEdg G -1 : iEdg G x dom iEdg G | iEdg G x N 1-1 onto iEdg H x dom iEdg H | iEdg H x M
32 eqidd G USHGraph H USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i iEdg H h iEdg G -1 = iEdg H h iEdg G -1
33 3 5 7 uspgrlimlem1 G USHGraph K = iEdg G x dom iEdg G | iEdg G x N
34 33 ad2antrr G USHGraph H USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i K = iEdg G x dom iEdg G | iEdg G x N
35 4 6 8 uspgrlimlem1 H USHGraph L = iEdg H x dom iEdg H | iEdg H x M
36 35 ad2antlr G USHGraph H USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i L = iEdg H x dom iEdg H | iEdg H x M
37 32 34 36 f1oeq123d G USHGraph H USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i iEdg H h iEdg G -1 : K 1-1 onto L iEdg H h iEdg G -1 : iEdg G x dom iEdg G | iEdg G x N 1-1 onto iEdg H x dom iEdg H | iEdg H x M
38 31 37 mpbird G USHGraph H USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i iEdg H h iEdg G -1 : K 1-1 onto L
39 simpll G USHGraph H USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i G USHGraph
40 simprr G USHGraph H USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i
41 1 2 3 4 5 6 7 8 uspgrlimlem3 G USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i e K f e = iEdg H h iEdg G -1 e
42 39 23 40 41 syl3anc G USHGraph H USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i e K f e = iEdg H h iEdg G -1 e
43 42 ralrimiv G USHGraph H USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i e K f e = iEdg H h iEdg G -1 e
44 38 43 jca G USHGraph H USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i iEdg H h iEdg G -1 : K 1-1 onto L e K f e = iEdg H h iEdg G -1 e
45 f1oeq1 g = iEdg H h iEdg G -1 g : K 1-1 onto L iEdg H h iEdg G -1 : K 1-1 onto L
46 fveq1 g = iEdg H h iEdg G -1 g e = iEdg H h iEdg G -1 e
47 46 eqeq2d g = iEdg H h iEdg G -1 f e = g e f e = iEdg H h iEdg G -1 e
48 47 ralbidv g = iEdg H h iEdg G -1 e K f e = g e e K f e = iEdg H h iEdg G -1 e
49 45 48 anbi12d g = iEdg H h iEdg G -1 g : K 1-1 onto L e K f e = g e iEdg H h iEdg G -1 : K 1-1 onto L e K f e = iEdg H h iEdg G -1 e
50 20 44 49 spcedv G USHGraph H USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i g g : K 1-1 onto L e K f e = g e
51 50 ex G USHGraph H USHGraph h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i g g : K 1-1 onto L e K f e = g e
52 51 exlimdv G USHGraph H USHGraph h h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i g g : K 1-1 onto L e K f e = g e
53 14 cnvex iEdg H -1 V
54 vex g V
55 53 54 coex iEdg H -1 g V
56 55 17 coex iEdg H -1 g iEdg G V
57 56 a1i G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e iEdg H -1 g iEdg G V
58 21 ad2antrr G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e iEdg G : dom iEdg G 1-1 onto Edg G
59 simprl G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e g : K 1-1 onto L
60 24 ad2antlr G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e iEdg H : dom iEdg H 1-1 onto Edg H
61 5 rabeqi x I | x N = x Edg G | x N
62 7 61 eqtri K = x Edg G | x N
63 62 ssrab3 K Edg G
64 6 rabeqi x J | x M = x Edg H | x M
65 8 64 eqtri L = x Edg H | x M
66 65 ssrab3 L Edg H
67 63 66 pm3.2i K Edg G L Edg H
68 67 a1i G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e K Edg G L Edg H
69 3f1oss2 iEdg G : dom iEdg G 1-1 onto Edg G g : K 1-1 onto L iEdg H : dom iEdg H 1-1 onto Edg H K Edg G L Edg H iEdg H -1 g iEdg G : iEdg G -1 K 1-1 onto iEdg H -1 L
70 58 59 60 68 69 syl31anc G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e iEdg H -1 g iEdg G : iEdg G -1 K 1-1 onto iEdg H -1 L
71 eqidd G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e iEdg H -1 g iEdg G = iEdg H -1 g iEdg G
72 3 5 7 uspgrlimlem2 G USHGraph iEdg G -1 K = x dom iEdg G | iEdg G x N
73 72 ad2antrr G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e iEdg G -1 K = x dom iEdg G | iEdg G x N
74 4 6 8 uspgrlimlem2 H USHGraph iEdg H -1 L = x dom iEdg H | iEdg H x M
75 74 ad2antlr G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e iEdg H -1 L = x dom iEdg H | iEdg H x M
76 71 73 75 f1oeq123d G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e iEdg H -1 g iEdg G : iEdg G -1 K 1-1 onto iEdg H -1 L iEdg H -1 g iEdg G : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M
77 70 76 mpbid G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e iEdg H -1 g iEdg G : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M
78 fveq2 x = i iEdg G x = iEdg G i
79 78 sseq1d x = i iEdg G x N iEdg G i N
80 79 elrab i x dom iEdg G | iEdg G x N i dom iEdg G iEdg G i N
81 1 2 3 4 5 6 7 8 uspgrlimlem4 G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e i dom iEdg G iEdg G i N f iEdg G i = iEdg H iEdg H -1 g iEdg G i
82 80 81 biimtrid G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H iEdg H -1 g iEdg G i
83 82 ralrimiv G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H iEdg H -1 g iEdg G i
84 77 83 jca G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e iEdg H -1 g iEdg G : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H iEdg H -1 g iEdg G i
85 f1oeq1 h = iEdg H -1 g iEdg G h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M iEdg H -1 g iEdg G : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M
86 fveq1 h = iEdg H -1 g iEdg G h i = iEdg H -1 g iEdg G i
87 86 fveq2d h = iEdg H -1 g iEdg G iEdg H h i = iEdg H iEdg H -1 g iEdg G i
88 87 eqeq2d h = iEdg H -1 g iEdg G f iEdg G i = iEdg H h i f iEdg G i = iEdg H iEdg H -1 g iEdg G i
89 88 ralbidv h = iEdg H -1 g iEdg G i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H iEdg H -1 g iEdg G i
90 85 89 anbi12d h = iEdg H -1 g iEdg G h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i iEdg H -1 g iEdg G : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H iEdg H -1 g iEdg G i
91 57 84 90 spcedv G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e h h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i
92 91 ex G USHGraph H USHGraph g : K 1-1 onto L e K f e = g e h h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i
93 92 exlimdv G USHGraph H USHGraph g g : K 1-1 onto L e K f e = g e h h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i
94 52 93 impbid G USHGraph H USHGraph h h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i g g : K 1-1 onto L e K f e = g e
95 94 anbi2d G USHGraph H USHGraph f : N 1-1 onto M h h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i f : N 1-1 onto M g g : K 1-1 onto L e K f e = g e
96 95 exbidv G USHGraph H USHGraph f f : N 1-1 onto M h h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i f f : N 1-1 onto M g g : K 1-1 onto L e K f e = g e
97 96 ralbidv G USHGraph H USHGraph v V f f : N 1-1 onto M h h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i v V f f : N 1-1 onto M g g : K 1-1 onto L e K f e = g e
98 97 anbi2d G USHGraph H USHGraph F : V 1-1 onto W v V f f : N 1-1 onto M h h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i F : V 1-1 onto W v V f f : N 1-1 onto M g g : K 1-1 onto L e K f e = g e
99 98 3adant3 G USHGraph H USHGraph F Z F : V 1-1 onto W v V f f : N 1-1 onto M h h : x dom iEdg G | iEdg G x N 1-1 onto x dom iEdg H | iEdg H x M i x dom iEdg G | iEdg G x N f iEdg G i = iEdg H h i F : V 1-1 onto W v V f f : N 1-1 onto M g g : K 1-1 onto L e K f e = g e
100 13 99 bitrd G USHGraph H USHGraph F Z F G GraphLocIso H F : V 1-1 onto W v V f f : N 1-1 onto M g g : K 1-1 onto L e K f e = g e