| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1ocnv |
|
| 2 |
|
f1of1 |
|
| 3 |
1 2
|
syl |
|
| 4 |
3
|
3ad2ant1 |
|
| 5 |
4
|
adantr |
|
| 6 |
|
cnvimass |
|
| 7 |
|
f1of |
|
| 8 |
|
fdm |
|
| 9 |
8
|
eqcomd |
|
| 10 |
1 7 9
|
3syl |
|
| 11 |
6 10
|
sseqtrrid |
|
| 12 |
11
|
3ad2ant1 |
|
| 13 |
12
|
adantr |
|
| 14 |
|
f1ofn |
|
| 15 |
1 14
|
syl |
|
| 16 |
15
|
3ad2ant1 |
|
| 17 |
16
|
adantr |
|
| 18 |
|
eqidd |
|
| 19 |
|
eqidd |
|
| 20 |
17 18 19
|
rescnvimafod |
|
| 21 |
|
fof |
|
| 22 |
20 21
|
syl |
|
| 23 |
|
f1resf1 |
|
| 24 |
5 13 22 23
|
syl3anc |
|
| 25 |
|
f1of1 |
|
| 26 |
25
|
3ad2ant2 |
|
| 27 |
26
|
adantr |
|
| 28 |
|
inss2 |
|
| 29 |
|
f1ores |
|
| 30 |
27 28 29
|
sylancl |
|
| 31 |
|
f1ofo |
|
| 32 |
|
forn |
|
| 33 |
1 31 32
|
3syl |
|
| 34 |
33
|
3ad2ant1 |
|
| 35 |
34
|
adantr |
|
| 36 |
35
|
ineq1d |
|
| 37 |
|
incom |
|
| 38 |
|
dfss2 |
|
| 39 |
38
|
biimpi |
|
| 40 |
37 39
|
eqtrid |
|
| 41 |
40
|
ad2antrl |
|
| 42 |
36 41
|
eqtrd |
|
| 43 |
42
|
imaeq2d |
|
| 44 |
|
f1ofn |
|
| 45 |
|
fnima |
|
| 46 |
44 45
|
syl |
|
| 47 |
|
f1ofo |
|
| 48 |
|
forn |
|
| 49 |
47 48
|
syl |
|
| 50 |
46 49
|
eqtrd |
|
| 51 |
50
|
3ad2ant2 |
|
| 52 |
51
|
adantr |
|
| 53 |
43 52
|
eqtrd |
|
| 54 |
53
|
eqcomd |
|
| 55 |
54
|
f1oeq3d |
|
| 56 |
30 55
|
mpbird |
|
| 57 |
|
f1orel |
|
| 58 |
57
|
3ad2ant1 |
|
| 59 |
58
|
adantr |
|
| 60 |
|
dfrel2 |
|
| 61 |
59 60
|
sylib |
|
| 62 |
61
|
eqcomd |
|
| 63 |
62
|
imaeq1d |
|
| 64 |
63
|
f1oeq2d |
|
| 65 |
1 7
|
syl |
|
| 66 |
65
|
3ad2ant1 |
|
| 67 |
66
|
adantr |
|
| 68 |
|
eqid |
|
| 69 |
|
eqid |
|
| 70 |
|
eqid |
|
| 71 |
|
f1of |
|
| 72 |
71
|
3ad2ant2 |
|
| 73 |
72
|
adantr |
|
| 74 |
|
eqid |
|
| 75 |
67 68 69 70 73 74
|
fcoresf1ob |
|
| 76 |
64 75
|
bitrd |
|
| 77 |
24 56 76
|
mpbir2and |
|
| 78 |
|
simpl3 |
|
| 79 |
|
simprr |
|
| 80 |
|
f1ocoima |
|
| 81 |
77 78 79 80
|
syl3anc |
|
| 82 |
|
coass |
|
| 83 |
|
f1oeq1 |
|
| 84 |
82 83
|
ax-mp |
|
| 85 |
81 84
|
sylibr |
|