Metamath Proof Explorer


Theorem 3f1oss1

Description: The composition of three bijections as bijection from the image of the domain onto the image of the range of the middle bijection. (Contributed by AV, 15-Aug-2025)

Ref Expression
Assertion 3f1oss1 F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E H G F -1 : F C 1-1 onto H D

Proof

Step Hyp Ref Expression
1 f1ocnv F : A 1-1 onto B F -1 : B 1-1 onto A
2 f1of1 F -1 : B 1-1 onto A F -1 : B 1-1 A
3 1 2 syl F : A 1-1 onto B F -1 : B 1-1 A
4 3 3ad2ant1 F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I F -1 : B 1-1 A
5 4 adantr F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E F -1 : B 1-1 A
6 cnvimass F -1 -1 C dom F -1
7 f1of F -1 : B 1-1 onto A F -1 : B A
8 fdm F -1 : B A dom F -1 = B
9 8 eqcomd F -1 : B A B = dom F -1
10 1 7 9 3syl F : A 1-1 onto B B = dom F -1
11 6 10 sseqtrrid F : A 1-1 onto B F -1 -1 C B
12 11 3ad2ant1 F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I F -1 -1 C B
13 12 adantr F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E F -1 -1 C B
14 f1ofn F -1 : B 1-1 onto A F -1 Fn B
15 1 14 syl F : A 1-1 onto B F -1 Fn B
16 15 3ad2ant1 F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I F -1 Fn B
17 16 adantr F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E F -1 Fn B
18 eqidd F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E ran F -1 C = ran F -1 C
19 eqidd F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E F -1 -1 C = F -1 -1 C
20 17 18 19 rescnvimafod F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E F -1 F -1 -1 C : F -1 -1 C onto ran F -1 C
21 fof F -1 F -1 -1 C : F -1 -1 C onto ran F -1 C F -1 F -1 -1 C : F -1 -1 C ran F -1 C
22 20 21 syl F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E F -1 F -1 -1 C : F -1 -1 C ran F -1 C
23 f1resf1 F -1 : B 1-1 A F -1 -1 C B F -1 F -1 -1 C : F -1 -1 C ran F -1 C F -1 F -1 -1 C : F -1 -1 C 1-1 ran F -1 C
24 5 13 22 23 syl3anc F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E F -1 F -1 -1 C : F -1 -1 C 1-1 ran F -1 C
25 f1of1 G : C 1-1 onto D G : C 1-1 D
26 25 3ad2ant2 F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I G : C 1-1 D
27 26 adantr F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E G : C 1-1 D
28 inss2 ran F -1 C C
29 f1ores G : C 1-1 D ran F -1 C C G ran F -1 C : ran F -1 C 1-1 onto G ran F -1 C
30 27 28 29 sylancl F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E G ran F -1 C : ran F -1 C 1-1 onto G ran F -1 C
31 f1ofo F -1 : B 1-1 onto A F -1 : B onto A
32 forn F -1 : B onto A ran F -1 = A
33 1 31 32 3syl F : A 1-1 onto B ran F -1 = A
34 33 3ad2ant1 F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I ran F -1 = A
35 34 adantr F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E ran F -1 = A
36 35 ineq1d F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E ran F -1 C = A C
37 incom A C = C A
38 dfss2 C A C A = C
39 38 biimpi C A C A = C
40 37 39 eqtrid C A A C = C
41 40 ad2antrl F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E A C = C
42 36 41 eqtrd F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E ran F -1 C = C
43 42 imaeq2d F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E G ran F -1 C = G C
44 f1ofn G : C 1-1 onto D G Fn C
45 fnima G Fn C G C = ran G
46 44 45 syl G : C 1-1 onto D G C = ran G
47 f1ofo G : C 1-1 onto D G : C onto D
48 forn G : C onto D ran G = D
49 47 48 syl G : C 1-1 onto D ran G = D
50 46 49 eqtrd G : C 1-1 onto D G C = D
51 50 3ad2ant2 F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I G C = D
52 51 adantr F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E G C = D
53 43 52 eqtrd F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E G ran F -1 C = D
54 53 eqcomd F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E D = G ran F -1 C
55 54 f1oeq3d F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E G ran F -1 C : ran F -1 C 1-1 onto D G ran F -1 C : ran F -1 C 1-1 onto G ran F -1 C
56 30 55 mpbird F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E G ran F -1 C : ran F -1 C 1-1 onto D
57 f1orel F : A 1-1 onto B Rel F
58 57 3ad2ant1 F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I Rel F
59 58 adantr F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E Rel F
60 dfrel2 Rel F F -1 -1 = F
61 59 60 sylib F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E F -1 -1 = F
62 61 eqcomd F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E F = F -1 -1
63 62 imaeq1d F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E F C = F -1 -1 C
64 63 f1oeq2d F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E G F -1 : F C 1-1 onto D G F -1 : F -1 -1 C 1-1 onto D
65 1 7 syl F : A 1-1 onto B F -1 : B A
66 65 3ad2ant1 F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I F -1 : B A
67 66 adantr F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E F -1 : B A
68 eqid ran F -1 C = ran F -1 C
69 eqid F -1 -1 C = F -1 -1 C
70 eqid F -1 F -1 -1 C = F -1 F -1 -1 C
71 f1of G : C 1-1 onto D G : C D
72 71 3ad2ant2 F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I G : C D
73 72 adantr F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E G : C D
74 eqid G ran F -1 C = G ran F -1 C
75 67 68 69 70 73 74 fcoresf1ob F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E G F -1 : F -1 -1 C 1-1 onto D F -1 F -1 -1 C : F -1 -1 C 1-1 ran F -1 C G ran F -1 C : ran F -1 C 1-1 onto D
76 64 75 bitrd F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E G F -1 : F C 1-1 onto D F -1 F -1 -1 C : F -1 -1 C 1-1 ran F -1 C G ran F -1 C : ran F -1 C 1-1 onto D
77 24 56 76 mpbir2and F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E G F -1 : F C 1-1 onto D
78 simpl3 F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E H : E 1-1 onto I
79 simprr F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E D E
80 f1ocoima G F -1 : F C 1-1 onto D H : E 1-1 onto I D E H G F -1 : F C 1-1 onto H D
81 77 78 79 80 syl3anc F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E H G F -1 : F C 1-1 onto H D
82 coass H G F -1 = H G F -1
83 f1oeq1 H G F -1 = H G F -1 H G F -1 : F C 1-1 onto H D H G F -1 : F C 1-1 onto H D
84 82 83 ax-mp H G F -1 : F C 1-1 onto H D H G F -1 : F C 1-1 onto H D
85 81 84 sylibr F : A 1-1 onto B G : C 1-1 onto D H : E 1-1 onto I C A D E H G F -1 : F C 1-1 onto H D