| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1ocnv |
|- ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A ) |
| 2 |
|
f1of1 |
|- ( `' F : B -1-1-onto-> A -> `' F : B -1-1-> A ) |
| 3 |
1 2
|
syl |
|- ( F : A -1-1-onto-> B -> `' F : B -1-1-> A ) |
| 4 |
3
|
3ad2ant1 |
|- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) -> `' F : B -1-1-> A ) |
| 5 |
4
|
adantr |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> `' F : B -1-1-> A ) |
| 6 |
|
cnvimass |
|- ( `' `' F " C ) C_ dom `' F |
| 7 |
|
f1of |
|- ( `' F : B -1-1-onto-> A -> `' F : B --> A ) |
| 8 |
|
fdm |
|- ( `' F : B --> A -> dom `' F = B ) |
| 9 |
8
|
eqcomd |
|- ( `' F : B --> A -> B = dom `' F ) |
| 10 |
1 7 9
|
3syl |
|- ( F : A -1-1-onto-> B -> B = dom `' F ) |
| 11 |
6 10
|
sseqtrrid |
|- ( F : A -1-1-onto-> B -> ( `' `' F " C ) C_ B ) |
| 12 |
11
|
3ad2ant1 |
|- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) -> ( `' `' F " C ) C_ B ) |
| 13 |
12
|
adantr |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( `' `' F " C ) C_ B ) |
| 14 |
|
f1ofn |
|- ( `' F : B -1-1-onto-> A -> `' F Fn B ) |
| 15 |
1 14
|
syl |
|- ( F : A -1-1-onto-> B -> `' F Fn B ) |
| 16 |
15
|
3ad2ant1 |
|- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) -> `' F Fn B ) |
| 17 |
16
|
adantr |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> `' F Fn B ) |
| 18 |
|
eqidd |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( ran `' F i^i C ) = ( ran `' F i^i C ) ) |
| 19 |
|
eqidd |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( `' `' F " C ) = ( `' `' F " C ) ) |
| 20 |
17 18 19
|
rescnvimafod |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( `' F |` ( `' `' F " C ) ) : ( `' `' F " C ) -onto-> ( ran `' F i^i C ) ) |
| 21 |
|
fof |
|- ( ( `' F |` ( `' `' F " C ) ) : ( `' `' F " C ) -onto-> ( ran `' F i^i C ) -> ( `' F |` ( `' `' F " C ) ) : ( `' `' F " C ) --> ( ran `' F i^i C ) ) |
| 22 |
20 21
|
syl |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( `' F |` ( `' `' F " C ) ) : ( `' `' F " C ) --> ( ran `' F i^i C ) ) |
| 23 |
|
f1resf1 |
|- ( ( `' F : B -1-1-> A /\ ( `' `' F " C ) C_ B /\ ( `' F |` ( `' `' F " C ) ) : ( `' `' F " C ) --> ( ran `' F i^i C ) ) -> ( `' F |` ( `' `' F " C ) ) : ( `' `' F " C ) -1-1-> ( ran `' F i^i C ) ) |
| 24 |
5 13 22 23
|
syl3anc |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( `' F |` ( `' `' F " C ) ) : ( `' `' F " C ) -1-1-> ( ran `' F i^i C ) ) |
| 25 |
|
f1of1 |
|- ( G : C -1-1-onto-> D -> G : C -1-1-> D ) |
| 26 |
25
|
3ad2ant2 |
|- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) -> G : C -1-1-> D ) |
| 27 |
26
|
adantr |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> G : C -1-1-> D ) |
| 28 |
|
inss2 |
|- ( ran `' F i^i C ) C_ C |
| 29 |
|
f1ores |
|- ( ( G : C -1-1-> D /\ ( ran `' F i^i C ) C_ C ) -> ( G |` ( ran `' F i^i C ) ) : ( ran `' F i^i C ) -1-1-onto-> ( G " ( ran `' F i^i C ) ) ) |
| 30 |
27 28 29
|
sylancl |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( G |` ( ran `' F i^i C ) ) : ( ran `' F i^i C ) -1-1-onto-> ( G " ( ran `' F i^i C ) ) ) |
| 31 |
|
f1ofo |
|- ( `' F : B -1-1-onto-> A -> `' F : B -onto-> A ) |
| 32 |
|
forn |
|- ( `' F : B -onto-> A -> ran `' F = A ) |
| 33 |
1 31 32
|
3syl |
|- ( F : A -1-1-onto-> B -> ran `' F = A ) |
| 34 |
33
|
3ad2ant1 |
|- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) -> ran `' F = A ) |
| 35 |
34
|
adantr |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ran `' F = A ) |
| 36 |
35
|
ineq1d |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( ran `' F i^i C ) = ( A i^i C ) ) |
| 37 |
|
incom |
|- ( A i^i C ) = ( C i^i A ) |
| 38 |
|
dfss2 |
|- ( C C_ A <-> ( C i^i A ) = C ) |
| 39 |
38
|
biimpi |
|- ( C C_ A -> ( C i^i A ) = C ) |
| 40 |
37 39
|
eqtrid |
|- ( C C_ A -> ( A i^i C ) = C ) |
| 41 |
40
|
ad2antrl |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( A i^i C ) = C ) |
| 42 |
36 41
|
eqtrd |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( ran `' F i^i C ) = C ) |
| 43 |
42
|
imaeq2d |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( G " ( ran `' F i^i C ) ) = ( G " C ) ) |
| 44 |
|
f1ofn |
|- ( G : C -1-1-onto-> D -> G Fn C ) |
| 45 |
|
fnima |
|- ( G Fn C -> ( G " C ) = ran G ) |
| 46 |
44 45
|
syl |
|- ( G : C -1-1-onto-> D -> ( G " C ) = ran G ) |
| 47 |
|
f1ofo |
|- ( G : C -1-1-onto-> D -> G : C -onto-> D ) |
| 48 |
|
forn |
|- ( G : C -onto-> D -> ran G = D ) |
| 49 |
47 48
|
syl |
|- ( G : C -1-1-onto-> D -> ran G = D ) |
| 50 |
46 49
|
eqtrd |
|- ( G : C -1-1-onto-> D -> ( G " C ) = D ) |
| 51 |
50
|
3ad2ant2 |
|- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) -> ( G " C ) = D ) |
| 52 |
51
|
adantr |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( G " C ) = D ) |
| 53 |
43 52
|
eqtrd |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( G " ( ran `' F i^i C ) ) = D ) |
| 54 |
53
|
eqcomd |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> D = ( G " ( ran `' F i^i C ) ) ) |
| 55 |
54
|
f1oeq3d |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( ( G |` ( ran `' F i^i C ) ) : ( ran `' F i^i C ) -1-1-onto-> D <-> ( G |` ( ran `' F i^i C ) ) : ( ran `' F i^i C ) -1-1-onto-> ( G " ( ran `' F i^i C ) ) ) ) |
| 56 |
30 55
|
mpbird |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( G |` ( ran `' F i^i C ) ) : ( ran `' F i^i C ) -1-1-onto-> D ) |
| 57 |
|
f1orel |
|- ( F : A -1-1-onto-> B -> Rel F ) |
| 58 |
57
|
3ad2ant1 |
|- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) -> Rel F ) |
| 59 |
58
|
adantr |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> Rel F ) |
| 60 |
|
dfrel2 |
|- ( Rel F <-> `' `' F = F ) |
| 61 |
59 60
|
sylib |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> `' `' F = F ) |
| 62 |
61
|
eqcomd |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> F = `' `' F ) |
| 63 |
62
|
imaeq1d |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( F " C ) = ( `' `' F " C ) ) |
| 64 |
63
|
f1oeq2d |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( ( G o. `' F ) : ( F " C ) -1-1-onto-> D <-> ( G o. `' F ) : ( `' `' F " C ) -1-1-onto-> D ) ) |
| 65 |
1 7
|
syl |
|- ( F : A -1-1-onto-> B -> `' F : B --> A ) |
| 66 |
65
|
3ad2ant1 |
|- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) -> `' F : B --> A ) |
| 67 |
66
|
adantr |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> `' F : B --> A ) |
| 68 |
|
eqid |
|- ( ran `' F i^i C ) = ( ran `' F i^i C ) |
| 69 |
|
eqid |
|- ( `' `' F " C ) = ( `' `' F " C ) |
| 70 |
|
eqid |
|- ( `' F |` ( `' `' F " C ) ) = ( `' F |` ( `' `' F " C ) ) |
| 71 |
|
f1of |
|- ( G : C -1-1-onto-> D -> G : C --> D ) |
| 72 |
71
|
3ad2ant2 |
|- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) -> G : C --> D ) |
| 73 |
72
|
adantr |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> G : C --> D ) |
| 74 |
|
eqid |
|- ( G |` ( ran `' F i^i C ) ) = ( G |` ( ran `' F i^i C ) ) |
| 75 |
67 68 69 70 73 74
|
fcoresf1ob |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( ( G o. `' F ) : ( `' `' F " C ) -1-1-onto-> D <-> ( ( `' F |` ( `' `' F " C ) ) : ( `' `' F " C ) -1-1-> ( ran `' F i^i C ) /\ ( G |` ( ran `' F i^i C ) ) : ( ran `' F i^i C ) -1-1-onto-> D ) ) ) |
| 76 |
64 75
|
bitrd |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( ( G o. `' F ) : ( F " C ) -1-1-onto-> D <-> ( ( `' F |` ( `' `' F " C ) ) : ( `' `' F " C ) -1-1-> ( ran `' F i^i C ) /\ ( G |` ( ran `' F i^i C ) ) : ( ran `' F i^i C ) -1-1-onto-> D ) ) ) |
| 77 |
24 56 76
|
mpbir2and |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( G o. `' F ) : ( F " C ) -1-1-onto-> D ) |
| 78 |
|
simpl3 |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> H : E -1-1-onto-> I ) |
| 79 |
|
simprr |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> D C_ E ) |
| 80 |
|
f1ocoima |
|- ( ( ( G o. `' F ) : ( F " C ) -1-1-onto-> D /\ H : E -1-1-onto-> I /\ D C_ E ) -> ( H o. ( G o. `' F ) ) : ( F " C ) -1-1-onto-> ( H " D ) ) |
| 81 |
77 78 79 80
|
syl3anc |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( H o. ( G o. `' F ) ) : ( F " C ) -1-1-onto-> ( H " D ) ) |
| 82 |
|
coass |
|- ( ( H o. G ) o. `' F ) = ( H o. ( G o. `' F ) ) |
| 83 |
|
f1oeq1 |
|- ( ( ( H o. G ) o. `' F ) = ( H o. ( G o. `' F ) ) -> ( ( ( H o. G ) o. `' F ) : ( F " C ) -1-1-onto-> ( H " D ) <-> ( H o. ( G o. `' F ) ) : ( F " C ) -1-1-onto-> ( H " D ) ) ) |
| 84 |
82 83
|
ax-mp |
|- ( ( ( H o. G ) o. `' F ) : ( F " C ) -1-1-onto-> ( H " D ) <-> ( H o. ( G o. `' F ) ) : ( F " C ) -1-1-onto-> ( H " D ) ) |
| 85 |
81 84
|
sylibr |
|- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( ( H o. G ) o. `' F ) : ( F " C ) -1-1-onto-> ( H " D ) ) |