Step |
Hyp |
Ref |
Expression |
1 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) |
2 |
|
f1of1 |
⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐵 –1-1→ 𝐴 ) |
3 |
1 2
|
syl |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1→ 𝐴 ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → ◡ 𝐹 : 𝐵 –1-1→ 𝐴 ) |
5 |
4
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ◡ 𝐹 : 𝐵 –1-1→ 𝐴 ) |
6 |
|
cnvimass |
⊢ ( ◡ ◡ 𝐹 “ 𝐶 ) ⊆ dom ◡ 𝐹 |
7 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
8 |
|
fdm |
⊢ ( ◡ 𝐹 : 𝐵 ⟶ 𝐴 → dom ◡ 𝐹 = 𝐵 ) |
9 |
8
|
eqcomd |
⊢ ( ◡ 𝐹 : 𝐵 ⟶ 𝐴 → 𝐵 = dom ◡ 𝐹 ) |
10 |
1 7 9
|
3syl |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐵 = dom ◡ 𝐹 ) |
11 |
6 10
|
sseqtrrid |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( ◡ ◡ 𝐹 “ 𝐶 ) ⊆ 𝐵 ) |
12 |
11
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → ( ◡ ◡ 𝐹 “ 𝐶 ) ⊆ 𝐵 ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ◡ ◡ 𝐹 “ 𝐶 ) ⊆ 𝐵 ) |
14 |
|
f1ofn |
⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 Fn 𝐵 ) |
15 |
1 14
|
syl |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 Fn 𝐵 ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → ◡ 𝐹 Fn 𝐵 ) |
17 |
16
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ◡ 𝐹 Fn 𝐵 ) |
18 |
|
eqidd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ran ◡ 𝐹 ∩ 𝐶 ) = ( ran ◡ 𝐹 ∩ 𝐶 ) ) |
19 |
|
eqidd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ◡ ◡ 𝐹 “ 𝐶 ) = ( ◡ ◡ 𝐹 “ 𝐶 ) ) |
20 |
17 18 19
|
rescnvimafod |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –onto→ ( ran ◡ 𝐹 ∩ 𝐶 ) ) |
21 |
|
fof |
⊢ ( ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –onto→ ( ran ◡ 𝐹 ∩ 𝐶 ) → ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) ⟶ ( ran ◡ 𝐹 ∩ 𝐶 ) ) |
22 |
20 21
|
syl |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) ⟶ ( ran ◡ 𝐹 ∩ 𝐶 ) ) |
23 |
|
f1resf1 |
⊢ ( ( ◡ 𝐹 : 𝐵 –1-1→ 𝐴 ∧ ( ◡ ◡ 𝐹 “ 𝐶 ) ⊆ 𝐵 ∧ ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) ⟶ ( ran ◡ 𝐹 ∩ 𝐶 ) ) → ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –1-1→ ( ran ◡ 𝐹 ∩ 𝐶 ) ) |
24 |
5 13 22 23
|
syl3anc |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –1-1→ ( ran ◡ 𝐹 ∩ 𝐶 ) ) |
25 |
|
f1of1 |
⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → 𝐺 : 𝐶 –1-1→ 𝐷 ) |
26 |
25
|
3ad2ant2 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → 𝐺 : 𝐶 –1-1→ 𝐷 ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → 𝐺 : 𝐶 –1-1→ 𝐷 ) |
28 |
|
inss2 |
⊢ ( ran ◡ 𝐹 ∩ 𝐶 ) ⊆ 𝐶 |
29 |
|
f1ores |
⊢ ( ( 𝐺 : 𝐶 –1-1→ 𝐷 ∧ ( ran ◡ 𝐹 ∩ 𝐶 ) ⊆ 𝐶 ) → ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) : ( ran ◡ 𝐹 ∩ 𝐶 ) –1-1-onto→ ( 𝐺 “ ( ran ◡ 𝐹 ∩ 𝐶 ) ) ) |
30 |
27 28 29
|
sylancl |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) : ( ran ◡ 𝐹 ∩ 𝐶 ) –1-1-onto→ ( 𝐺 “ ( ran ◡ 𝐹 ∩ 𝐶 ) ) ) |
31 |
|
f1ofo |
⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐵 –onto→ 𝐴 ) |
32 |
|
forn |
⊢ ( ◡ 𝐹 : 𝐵 –onto→ 𝐴 → ran ◡ 𝐹 = 𝐴 ) |
33 |
1 31 32
|
3syl |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ran ◡ 𝐹 = 𝐴 ) |
34 |
33
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → ran ◡ 𝐹 = 𝐴 ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ran ◡ 𝐹 = 𝐴 ) |
36 |
35
|
ineq1d |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ran ◡ 𝐹 ∩ 𝐶 ) = ( 𝐴 ∩ 𝐶 ) ) |
37 |
|
incom |
⊢ ( 𝐴 ∩ 𝐶 ) = ( 𝐶 ∩ 𝐴 ) |
38 |
|
dfss2 |
⊢ ( 𝐶 ⊆ 𝐴 ↔ ( 𝐶 ∩ 𝐴 ) = 𝐶 ) |
39 |
38
|
biimpi |
⊢ ( 𝐶 ⊆ 𝐴 → ( 𝐶 ∩ 𝐴 ) = 𝐶 ) |
40 |
37 39
|
eqtrid |
⊢ ( 𝐶 ⊆ 𝐴 → ( 𝐴 ∩ 𝐶 ) = 𝐶 ) |
41 |
40
|
ad2antrl |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐴 ∩ 𝐶 ) = 𝐶 ) |
42 |
36 41
|
eqtrd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ran ◡ 𝐹 ∩ 𝐶 ) = 𝐶 ) |
43 |
42
|
imaeq2d |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐺 “ ( ran ◡ 𝐹 ∩ 𝐶 ) ) = ( 𝐺 “ 𝐶 ) ) |
44 |
|
f1ofn |
⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → 𝐺 Fn 𝐶 ) |
45 |
|
fnima |
⊢ ( 𝐺 Fn 𝐶 → ( 𝐺 “ 𝐶 ) = ran 𝐺 ) |
46 |
44 45
|
syl |
⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → ( 𝐺 “ 𝐶 ) = ran 𝐺 ) |
47 |
|
f1ofo |
⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → 𝐺 : 𝐶 –onto→ 𝐷 ) |
48 |
|
forn |
⊢ ( 𝐺 : 𝐶 –onto→ 𝐷 → ran 𝐺 = 𝐷 ) |
49 |
47 48
|
syl |
⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → ran 𝐺 = 𝐷 ) |
50 |
46 49
|
eqtrd |
⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → ( 𝐺 “ 𝐶 ) = 𝐷 ) |
51 |
50
|
3ad2ant2 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → ( 𝐺 “ 𝐶 ) = 𝐷 ) |
52 |
51
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐺 “ 𝐶 ) = 𝐷 ) |
53 |
43 52
|
eqtrd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐺 “ ( ran ◡ 𝐹 ∩ 𝐶 ) ) = 𝐷 ) |
54 |
53
|
eqcomd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → 𝐷 = ( 𝐺 “ ( ran ◡ 𝐹 ∩ 𝐶 ) ) ) |
55 |
54
|
f1oeq3d |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) : ( ran ◡ 𝐹 ∩ 𝐶 ) –1-1-onto→ 𝐷 ↔ ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) : ( ran ◡ 𝐹 ∩ 𝐶 ) –1-1-onto→ ( 𝐺 “ ( ran ◡ 𝐹 ∩ 𝐶 ) ) ) ) |
56 |
30 55
|
mpbird |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) : ( ran ◡ 𝐹 ∩ 𝐶 ) –1-1-onto→ 𝐷 ) |
57 |
|
f1orel |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → Rel 𝐹 ) |
58 |
57
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → Rel 𝐹 ) |
59 |
58
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → Rel 𝐹 ) |
60 |
|
dfrel2 |
⊢ ( Rel 𝐹 ↔ ◡ ◡ 𝐹 = 𝐹 ) |
61 |
59 60
|
sylib |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ◡ ◡ 𝐹 = 𝐹 ) |
62 |
61
|
eqcomd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → 𝐹 = ◡ ◡ 𝐹 ) |
63 |
62
|
imaeq1d |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐹 “ 𝐶 ) = ( ◡ ◡ 𝐹 “ 𝐶 ) ) |
64 |
63
|
f1oeq2d |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ( 𝐺 ∘ ◡ 𝐹 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐷 ↔ ( 𝐺 ∘ ◡ 𝐹 ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –1-1-onto→ 𝐷 ) ) |
65 |
1 7
|
syl |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
66 |
65
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
67 |
66
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
68 |
|
eqid |
⊢ ( ran ◡ 𝐹 ∩ 𝐶 ) = ( ran ◡ 𝐹 ∩ 𝐶 ) |
69 |
|
eqid |
⊢ ( ◡ ◡ 𝐹 “ 𝐶 ) = ( ◡ ◡ 𝐹 “ 𝐶 ) |
70 |
|
eqid |
⊢ ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) = ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) |
71 |
|
f1of |
⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → 𝐺 : 𝐶 ⟶ 𝐷 ) |
72 |
71
|
3ad2ant2 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → 𝐺 : 𝐶 ⟶ 𝐷 ) |
73 |
72
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → 𝐺 : 𝐶 ⟶ 𝐷 ) |
74 |
|
eqid |
⊢ ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) = ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) |
75 |
67 68 69 70 73 74
|
fcoresf1ob |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ( 𝐺 ∘ ◡ 𝐹 ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –1-1-onto→ 𝐷 ↔ ( ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –1-1→ ( ran ◡ 𝐹 ∩ 𝐶 ) ∧ ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) : ( ran ◡ 𝐹 ∩ 𝐶 ) –1-1-onto→ 𝐷 ) ) ) |
76 |
64 75
|
bitrd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ( 𝐺 ∘ ◡ 𝐹 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐷 ↔ ( ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –1-1→ ( ran ◡ 𝐹 ∩ 𝐶 ) ∧ ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) : ( ran ◡ 𝐹 ∩ 𝐶 ) –1-1-onto→ 𝐷 ) ) ) |
77 |
24 56 76
|
mpbir2and |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐺 ∘ ◡ 𝐹 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐷 ) |
78 |
|
simpl3 |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) |
79 |
|
simprr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → 𝐷 ⊆ 𝐸 ) |
80 |
|
f1ocoima |
⊢ ( ( ( 𝐺 ∘ ◡ 𝐹 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ∧ 𝐷 ⊆ 𝐸 ) → ( 𝐻 ∘ ( 𝐺 ∘ ◡ 𝐹 ) ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ ( 𝐻 “ 𝐷 ) ) |
81 |
77 78 79 80
|
syl3anc |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐻 ∘ ( 𝐺 ∘ ◡ 𝐹 ) ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ ( 𝐻 “ 𝐷 ) ) |
82 |
|
coass |
⊢ ( ( 𝐻 ∘ 𝐺 ) ∘ ◡ 𝐹 ) = ( 𝐻 ∘ ( 𝐺 ∘ ◡ 𝐹 ) ) |
83 |
|
f1oeq1 |
⊢ ( ( ( 𝐻 ∘ 𝐺 ) ∘ ◡ 𝐹 ) = ( 𝐻 ∘ ( 𝐺 ∘ ◡ 𝐹 ) ) → ( ( ( 𝐻 ∘ 𝐺 ) ∘ ◡ 𝐹 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ ( 𝐻 “ 𝐷 ) ↔ ( 𝐻 ∘ ( 𝐺 ∘ ◡ 𝐹 ) ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ ( 𝐻 “ 𝐷 ) ) ) |
84 |
82 83
|
ax-mp |
⊢ ( ( ( 𝐻 ∘ 𝐺 ) ∘ ◡ 𝐹 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ ( 𝐻 “ 𝐷 ) ↔ ( 𝐻 ∘ ( 𝐺 ∘ ◡ 𝐹 ) ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ ( 𝐻 “ 𝐷 ) ) |
85 |
81 84
|
sylibr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ( 𝐻 ∘ 𝐺 ) ∘ ◡ 𝐹 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ ( 𝐻 “ 𝐷 ) ) |