| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) |
| 2 |
|
f1of1 |
⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐵 –1-1→ 𝐴 ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1→ 𝐴 ) |
| 4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → ◡ 𝐹 : 𝐵 –1-1→ 𝐴 ) |
| 5 |
4
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ◡ 𝐹 : 𝐵 –1-1→ 𝐴 ) |
| 6 |
|
cnvimass |
⊢ ( ◡ ◡ 𝐹 “ 𝐶 ) ⊆ dom ◡ 𝐹 |
| 7 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 8 |
|
fdm |
⊢ ( ◡ 𝐹 : 𝐵 ⟶ 𝐴 → dom ◡ 𝐹 = 𝐵 ) |
| 9 |
8
|
eqcomd |
⊢ ( ◡ 𝐹 : 𝐵 ⟶ 𝐴 → 𝐵 = dom ◡ 𝐹 ) |
| 10 |
1 7 9
|
3syl |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐵 = dom ◡ 𝐹 ) |
| 11 |
6 10
|
sseqtrrid |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( ◡ ◡ 𝐹 “ 𝐶 ) ⊆ 𝐵 ) |
| 12 |
11
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → ( ◡ ◡ 𝐹 “ 𝐶 ) ⊆ 𝐵 ) |
| 13 |
12
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ◡ ◡ 𝐹 “ 𝐶 ) ⊆ 𝐵 ) |
| 14 |
|
f1ofn |
⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 Fn 𝐵 ) |
| 15 |
1 14
|
syl |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 Fn 𝐵 ) |
| 16 |
15
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → ◡ 𝐹 Fn 𝐵 ) |
| 17 |
16
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ◡ 𝐹 Fn 𝐵 ) |
| 18 |
|
eqidd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ran ◡ 𝐹 ∩ 𝐶 ) = ( ran ◡ 𝐹 ∩ 𝐶 ) ) |
| 19 |
|
eqidd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ◡ ◡ 𝐹 “ 𝐶 ) = ( ◡ ◡ 𝐹 “ 𝐶 ) ) |
| 20 |
17 18 19
|
rescnvimafod |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –onto→ ( ran ◡ 𝐹 ∩ 𝐶 ) ) |
| 21 |
|
fof |
⊢ ( ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –onto→ ( ran ◡ 𝐹 ∩ 𝐶 ) → ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) ⟶ ( ran ◡ 𝐹 ∩ 𝐶 ) ) |
| 22 |
20 21
|
syl |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) ⟶ ( ran ◡ 𝐹 ∩ 𝐶 ) ) |
| 23 |
|
f1resf1 |
⊢ ( ( ◡ 𝐹 : 𝐵 –1-1→ 𝐴 ∧ ( ◡ ◡ 𝐹 “ 𝐶 ) ⊆ 𝐵 ∧ ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) ⟶ ( ran ◡ 𝐹 ∩ 𝐶 ) ) → ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –1-1→ ( ran ◡ 𝐹 ∩ 𝐶 ) ) |
| 24 |
5 13 22 23
|
syl3anc |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –1-1→ ( ran ◡ 𝐹 ∩ 𝐶 ) ) |
| 25 |
|
f1of1 |
⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → 𝐺 : 𝐶 –1-1→ 𝐷 ) |
| 26 |
25
|
3ad2ant2 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → 𝐺 : 𝐶 –1-1→ 𝐷 ) |
| 27 |
26
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → 𝐺 : 𝐶 –1-1→ 𝐷 ) |
| 28 |
|
inss2 |
⊢ ( ran ◡ 𝐹 ∩ 𝐶 ) ⊆ 𝐶 |
| 29 |
|
f1ores |
⊢ ( ( 𝐺 : 𝐶 –1-1→ 𝐷 ∧ ( ran ◡ 𝐹 ∩ 𝐶 ) ⊆ 𝐶 ) → ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) : ( ran ◡ 𝐹 ∩ 𝐶 ) –1-1-onto→ ( 𝐺 “ ( ran ◡ 𝐹 ∩ 𝐶 ) ) ) |
| 30 |
27 28 29
|
sylancl |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) : ( ran ◡ 𝐹 ∩ 𝐶 ) –1-1-onto→ ( 𝐺 “ ( ran ◡ 𝐹 ∩ 𝐶 ) ) ) |
| 31 |
|
f1ofo |
⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐵 –onto→ 𝐴 ) |
| 32 |
|
forn |
⊢ ( ◡ 𝐹 : 𝐵 –onto→ 𝐴 → ran ◡ 𝐹 = 𝐴 ) |
| 33 |
1 31 32
|
3syl |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ran ◡ 𝐹 = 𝐴 ) |
| 34 |
33
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → ran ◡ 𝐹 = 𝐴 ) |
| 35 |
34
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ran ◡ 𝐹 = 𝐴 ) |
| 36 |
35
|
ineq1d |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ran ◡ 𝐹 ∩ 𝐶 ) = ( 𝐴 ∩ 𝐶 ) ) |
| 37 |
|
incom |
⊢ ( 𝐴 ∩ 𝐶 ) = ( 𝐶 ∩ 𝐴 ) |
| 38 |
|
dfss2 |
⊢ ( 𝐶 ⊆ 𝐴 ↔ ( 𝐶 ∩ 𝐴 ) = 𝐶 ) |
| 39 |
38
|
biimpi |
⊢ ( 𝐶 ⊆ 𝐴 → ( 𝐶 ∩ 𝐴 ) = 𝐶 ) |
| 40 |
37 39
|
eqtrid |
⊢ ( 𝐶 ⊆ 𝐴 → ( 𝐴 ∩ 𝐶 ) = 𝐶 ) |
| 41 |
40
|
ad2antrl |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐴 ∩ 𝐶 ) = 𝐶 ) |
| 42 |
36 41
|
eqtrd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ran ◡ 𝐹 ∩ 𝐶 ) = 𝐶 ) |
| 43 |
42
|
imaeq2d |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐺 “ ( ran ◡ 𝐹 ∩ 𝐶 ) ) = ( 𝐺 “ 𝐶 ) ) |
| 44 |
|
f1ofn |
⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → 𝐺 Fn 𝐶 ) |
| 45 |
|
fnima |
⊢ ( 𝐺 Fn 𝐶 → ( 𝐺 “ 𝐶 ) = ran 𝐺 ) |
| 46 |
44 45
|
syl |
⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → ( 𝐺 “ 𝐶 ) = ran 𝐺 ) |
| 47 |
|
f1ofo |
⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → 𝐺 : 𝐶 –onto→ 𝐷 ) |
| 48 |
|
forn |
⊢ ( 𝐺 : 𝐶 –onto→ 𝐷 → ran 𝐺 = 𝐷 ) |
| 49 |
47 48
|
syl |
⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → ran 𝐺 = 𝐷 ) |
| 50 |
46 49
|
eqtrd |
⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → ( 𝐺 “ 𝐶 ) = 𝐷 ) |
| 51 |
50
|
3ad2ant2 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → ( 𝐺 “ 𝐶 ) = 𝐷 ) |
| 52 |
51
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐺 “ 𝐶 ) = 𝐷 ) |
| 53 |
43 52
|
eqtrd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐺 “ ( ran ◡ 𝐹 ∩ 𝐶 ) ) = 𝐷 ) |
| 54 |
53
|
eqcomd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → 𝐷 = ( 𝐺 “ ( ran ◡ 𝐹 ∩ 𝐶 ) ) ) |
| 55 |
54
|
f1oeq3d |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) : ( ran ◡ 𝐹 ∩ 𝐶 ) –1-1-onto→ 𝐷 ↔ ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) : ( ran ◡ 𝐹 ∩ 𝐶 ) –1-1-onto→ ( 𝐺 “ ( ran ◡ 𝐹 ∩ 𝐶 ) ) ) ) |
| 56 |
30 55
|
mpbird |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) : ( ran ◡ 𝐹 ∩ 𝐶 ) –1-1-onto→ 𝐷 ) |
| 57 |
|
f1orel |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → Rel 𝐹 ) |
| 58 |
57
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → Rel 𝐹 ) |
| 59 |
58
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → Rel 𝐹 ) |
| 60 |
|
dfrel2 |
⊢ ( Rel 𝐹 ↔ ◡ ◡ 𝐹 = 𝐹 ) |
| 61 |
59 60
|
sylib |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ◡ ◡ 𝐹 = 𝐹 ) |
| 62 |
61
|
eqcomd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → 𝐹 = ◡ ◡ 𝐹 ) |
| 63 |
62
|
imaeq1d |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐹 “ 𝐶 ) = ( ◡ ◡ 𝐹 “ 𝐶 ) ) |
| 64 |
63
|
f1oeq2d |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ( 𝐺 ∘ ◡ 𝐹 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐷 ↔ ( 𝐺 ∘ ◡ 𝐹 ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –1-1-onto→ 𝐷 ) ) |
| 65 |
1 7
|
syl |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 66 |
65
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 67 |
66
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 68 |
|
eqid |
⊢ ( ran ◡ 𝐹 ∩ 𝐶 ) = ( ran ◡ 𝐹 ∩ 𝐶 ) |
| 69 |
|
eqid |
⊢ ( ◡ ◡ 𝐹 “ 𝐶 ) = ( ◡ ◡ 𝐹 “ 𝐶 ) |
| 70 |
|
eqid |
⊢ ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) = ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) |
| 71 |
|
f1of |
⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → 𝐺 : 𝐶 ⟶ 𝐷 ) |
| 72 |
71
|
3ad2ant2 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → 𝐺 : 𝐶 ⟶ 𝐷 ) |
| 73 |
72
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → 𝐺 : 𝐶 ⟶ 𝐷 ) |
| 74 |
|
eqid |
⊢ ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) = ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) |
| 75 |
67 68 69 70 73 74
|
fcoresf1ob |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ( 𝐺 ∘ ◡ 𝐹 ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –1-1-onto→ 𝐷 ↔ ( ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –1-1→ ( ran ◡ 𝐹 ∩ 𝐶 ) ∧ ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) : ( ran ◡ 𝐹 ∩ 𝐶 ) –1-1-onto→ 𝐷 ) ) ) |
| 76 |
64 75
|
bitrd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ( 𝐺 ∘ ◡ 𝐹 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐷 ↔ ( ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –1-1→ ( ran ◡ 𝐹 ∩ 𝐶 ) ∧ ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) : ( ran ◡ 𝐹 ∩ 𝐶 ) –1-1-onto→ 𝐷 ) ) ) |
| 77 |
24 56 76
|
mpbir2and |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐺 ∘ ◡ 𝐹 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐷 ) |
| 78 |
|
simpl3 |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) |
| 79 |
|
simprr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → 𝐷 ⊆ 𝐸 ) |
| 80 |
|
f1ocoima |
⊢ ( ( ( 𝐺 ∘ ◡ 𝐹 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ∧ 𝐷 ⊆ 𝐸 ) → ( 𝐻 ∘ ( 𝐺 ∘ ◡ 𝐹 ) ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ ( 𝐻 “ 𝐷 ) ) |
| 81 |
77 78 79 80
|
syl3anc |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐻 ∘ ( 𝐺 ∘ ◡ 𝐹 ) ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ ( 𝐻 “ 𝐷 ) ) |
| 82 |
|
coass |
⊢ ( ( 𝐻 ∘ 𝐺 ) ∘ ◡ 𝐹 ) = ( 𝐻 ∘ ( 𝐺 ∘ ◡ 𝐹 ) ) |
| 83 |
|
f1oeq1 |
⊢ ( ( ( 𝐻 ∘ 𝐺 ) ∘ ◡ 𝐹 ) = ( 𝐻 ∘ ( 𝐺 ∘ ◡ 𝐹 ) ) → ( ( ( 𝐻 ∘ 𝐺 ) ∘ ◡ 𝐹 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ ( 𝐻 “ 𝐷 ) ↔ ( 𝐻 ∘ ( 𝐺 ∘ ◡ 𝐹 ) ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ ( 𝐻 “ 𝐷 ) ) ) |
| 84 |
82 83
|
ax-mp |
⊢ ( ( ( 𝐻 ∘ 𝐺 ) ∘ ◡ 𝐹 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ ( 𝐻 “ 𝐷 ) ↔ ( 𝐻 ∘ ( 𝐺 ∘ ◡ 𝐹 ) ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ ( 𝐻 “ 𝐷 ) ) |
| 85 |
81 84
|
sylibr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ( 𝐻 ∘ 𝐺 ) ∘ ◡ 𝐹 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ ( 𝐻 “ 𝐷 ) ) |