Step |
Hyp |
Ref |
Expression |
1 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) |
2 |
|
id |
⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → 𝐺 : 𝐶 –1-1-onto→ 𝐷 ) |
3 |
|
f1ocnv |
⊢ ( 𝐻 : 𝐸 –1-1-onto→ 𝐼 → ◡ 𝐻 : 𝐼 –1-1-onto→ 𝐸 ) |
4 |
|
3f1oss1 |
⊢ ( ( ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ ◡ 𝐻 : 𝐼 –1-1-onto→ 𝐸 ) ∧ ( 𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐼 ) ) → ( ( ◡ 𝐻 ∘ 𝐺 ) ∘ ◡ ◡ 𝐹 ) : ( ◡ 𝐹 “ 𝐶 ) –1-1-onto→ ( ◡ 𝐻 “ 𝐷 ) ) |
5 |
1 2 3 4
|
syl3anl |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐼 ) ) → ( ( ◡ 𝐻 ∘ 𝐺 ) ∘ ◡ ◡ 𝐹 ) : ( ◡ 𝐹 “ 𝐶 ) –1-1-onto→ ( ◡ 𝐻 “ 𝐷 ) ) |
6 |
|
f1orel |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → Rel 𝐹 ) |
7 |
|
dfrel2 |
⊢ ( Rel 𝐹 ↔ ◡ ◡ 𝐹 = 𝐹 ) |
8 |
7
|
biimpi |
⊢ ( Rel 𝐹 → ◡ ◡ 𝐹 = 𝐹 ) |
9 |
8
|
eqcomd |
⊢ ( Rel 𝐹 → 𝐹 = ◡ ◡ 𝐹 ) |
10 |
9
|
coeq2d |
⊢ ( Rel 𝐹 → ( ( ◡ 𝐻 ∘ 𝐺 ) ∘ 𝐹 ) = ( ( ◡ 𝐻 ∘ 𝐺 ) ∘ ◡ ◡ 𝐹 ) ) |
11 |
10
|
f1oeq1d |
⊢ ( Rel 𝐹 → ( ( ( ◡ 𝐻 ∘ 𝐺 ) ∘ 𝐹 ) : ( ◡ 𝐹 “ 𝐶 ) –1-1-onto→ ( ◡ 𝐻 “ 𝐷 ) ↔ ( ( ◡ 𝐻 ∘ 𝐺 ) ∘ ◡ ◡ 𝐹 ) : ( ◡ 𝐹 “ 𝐶 ) –1-1-onto→ ( ◡ 𝐻 “ 𝐷 ) ) ) |
12 |
6 11
|
syl |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( ( ( ◡ 𝐻 ∘ 𝐺 ) ∘ 𝐹 ) : ( ◡ 𝐹 “ 𝐶 ) –1-1-onto→ ( ◡ 𝐻 “ 𝐷 ) ↔ ( ( ◡ 𝐻 ∘ 𝐺 ) ∘ ◡ ◡ 𝐹 ) : ( ◡ 𝐹 “ 𝐶 ) –1-1-onto→ ( ◡ 𝐻 “ 𝐷 ) ) ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → ( ( ( ◡ 𝐻 ∘ 𝐺 ) ∘ 𝐹 ) : ( ◡ 𝐹 “ 𝐶 ) –1-1-onto→ ( ◡ 𝐻 “ 𝐷 ) ↔ ( ( ◡ 𝐻 ∘ 𝐺 ) ∘ ◡ ◡ 𝐹 ) : ( ◡ 𝐹 “ 𝐶 ) –1-1-onto→ ( ◡ 𝐻 “ 𝐷 ) ) ) |
14 |
13
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐼 ) ) → ( ( ( ◡ 𝐻 ∘ 𝐺 ) ∘ 𝐹 ) : ( ◡ 𝐹 “ 𝐶 ) –1-1-onto→ ( ◡ 𝐻 “ 𝐷 ) ↔ ( ( ◡ 𝐻 ∘ 𝐺 ) ∘ ◡ ◡ 𝐹 ) : ( ◡ 𝐹 “ 𝐶 ) –1-1-onto→ ( ◡ 𝐻 “ 𝐷 ) ) ) |
15 |
5 14
|
mpbird |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐼 ) ) → ( ( ◡ 𝐻 ∘ 𝐺 ) ∘ 𝐹 ) : ( ◡ 𝐹 “ 𝐶 ) –1-1-onto→ ( ◡ 𝐻 “ 𝐷 ) ) |